Friday, June 28, 2013

Appendicitis

Appendicitis is defined as a condition of inflammation of Appendix. It is classified  as an emergency, in many required the removal of the appendix. If burst, or perforate, spilling infectious materials into the abdominal cavity can be life threatening.

I. Signs and Symptoms
1. Abdominal pain and upper respiratory tract infection
Although appendicitis is the condition that most commonly requires emergent abdominal surgery in the paediatric population, less than 2% of the disease occurs in infants and it is even more uncommon in neonates. There is report of a  rare case of a 14-month-old child presenting with abdominal pain first diagnosed with upper respiratory tract infection and then admitted to our Paediatric Surgery Department with a final diagnosis of acute appendicitis, according to the  FONDAZIONE IRCCS CA' GRANDA - Ospedale Maggiore Policlinico(1).

2. Vomiting,fever,  pain, anorexia, diarrhea, abdominal tenderness, peritonitis, temperature 38.0 degrees C or more, abdominal distension, Leukocytosis, small-bowel obstruction (SBO), Contrast enemas and Perforated appendicitis
In the study to identify the presenting symptoms and signs in this age group and examine their subsequent management and outcome, by the The Scarborough Hospital, indicated that in 27 children less than 3 years old (mean 23 months) comprised 2.3% of all children with appendicitis in the series, the most common presenting symptoms were vomiting (27), fever (23), pain (21), anorexia (15), and diarrhea (11). The average duration of symptoms was 3 days, with 4 or more days in 9 children. Eighteen children were seen by a physician before the correct diagnosis was made; 14 were initially treated for an upper respiratory tract infection, otitis media, or a urinary tract infection. The most common presenting signs were abdominal tenderness (27), peritonitis (24), temperature 38.0 degrees C or more (21), abdominal distension (18), Leukocytosis (<12.0 x 10(3)/mm(3)) was found in 18, tenderness was localized to the right lower quadrant (RLQ) in 14 and was diffuse in 10. Abdominal radiographs demonstrated findings of a small-bowel obstruction (SBO) in 14 of 21 patients, a fecalith in 2, and a pneumoperitoneum in 1. Contrast enemas were performed in 6 children, 5 of whom had a phlegmon or an abscess. Perforated appendicitis was found in all 27 patients. An appendectomy was performed in 25 and a RLQ drain was placed in 18(2).

3. An abdominal mass, guarding, rebound tenderness, rigidity, diffuse or focal tenderness, diarrhea, emesis, fever, pain, and anorexia
According to the Children's Hospital of Philadelphia, the common physical signs of an abdominal mass, guarding, rebound tenderness, rigidity, and diffuse or focal tenderness and  common symptoms are  diarrhea, emesis, fever, pain, and anorexia with the most common presenting symptom was abdominal pain (94%); the most common sign was abdominal tenderness (95.8%)(3)
 
II. Causes ans risk factors
A. Causes
The cause of appendicitis is the result of blockage by stool, a foreign body, or cancer of that can lead to infection.
1, Bacterial, viral and parasitic infiection 
According to the study by the, the pathologic spectrum of the inflamed appendix encompasses a wide range of infectious entities, some with specific histologic findings, and others with nonspecific findings that may require an extensive diagnostic evaluation. The appendix is exclusively involved in some of these disorders, and in others may be involved through extension from other areas of the gastrointestinal tract(4). Other sin the study to investigate the role of parasitic infestation in the etiology of acute pediatric appendicitis, indicated that parasites were present in 5.5% (88 patients), and of those 88 parasitic infestations, 45 (51.1%) were Enterobaisis, 8 (9.1%) were Schistosomiasis, 23 (26.1%) were Ascariasis, 7 (8%) Trichuriasis, and 5 (5.7%) were Teania Saginata. The percentage of patients with suppurative, gangrenous or perforated appendicitis was similar in both groups with no statistical significance, irrespective of the presence or absence of parasitic infestation(5).

2. Foreign objects
Appendicitis and its complications remain a common problem affecting patients of all age groups. Appendicitis due to foreign bodies is rare and carries an estimated frequency of 0.0005%. But Aaccording to the Department of Surgery, Heilig Hart Tienen, ther is case of a 44-year-old man with appendicitis induced by an appendicolith containing eight steel shotgun pellets. The man was a recreational hunter and for the past 20 years he consumed wild game on a regular basis(6).

B. Risk factors 
1.  Age <20 years, white cell count >10 × 103/mm
In the study to evaluate the impact of timing of appendectomy and other potential risk factors on progression of acute appendicitis, by searching the relevant databases of a tertiary medical center identified 1,604 patients with verified acute appendicitis who underwent appendectomy in 2004-2007with demographic and clinical data and time from symptom onset to emergency room admission ("patient interval") and from emergency room admission to surgery ("hospital interval") and their combination were analyzed by pathological grade, indicated that on multivariate analyses, independent risk factors for appendiceal perforation were age <20 years (OR = 1.58, 95 % CI 1.07-2.35) or >50 years (OR = 2.84, 95 % CI 1.82-4.45) (relative to 20-50 years), white cell count >10 × 103/mm(3) (OR = 4.45, 95 % CI 2.05-9.67), body temperature >37.8 °C (OR = 2.23, 95 % CI 1.45-3.41), hospital interval >24 h (OR = 2.84, 95 % CI 1.49-5.4), patient interval >48 h (OR = 3.84, 95 % CI 2.35-6.29), and combined interval >48 h (OR = 4.29, 95 % CI 2.2-8.36)(7).

2. Gender different, among young
According to study appendicitis is common among young, healthy populations; appendectomy is one of the most common surgical procedures performed in the United States. Among active and reserve component members, there were 31,610 cases of appendicitis and 30,183 appendectomies during 2002 to 2011. The overall incidence rate of appendicitis in the active component was 18.4 per 10,000 person-years (p-yrs). Active component males reported greater rates of perforated appendicitis (2.6 per 10,000 p-yrs). Active component females had higher rates of incidental appendectomies (2.6 per 10,000 p-yrs)(8).

3. Race, increased over time and is higher in the summer months
Appendicitis is most common in whites and Hispanics and less common in African Americans and Asians and incidence has increased over time and is higher in the summer months, according to the study by the University of California San Diego(9).

4. Prior antibiotic administration 
Prior treatment with antibiotics was an independent risk factor for therapeutic delay in pediatric AA, according to the study by the National Center for Child Health and Development, Tokyo(10).

5. Decreased bowel sounds; rebound tenderness; and presence of psoas, obturator, or Rovsing's signs
Factors associated with an increased likelihood of appendicitis included decreased bowel sounds; rebound tenderness; and presence of psoas, obturator, or Rovsing's signs(11).

6. In patients with end-stage renal disease
The independent risk factors were atrial fibrillation (hazard ratio [HR], 2.08), severe liver disease (HR, 1.74), diabetes mellitus (HR, 1.58), and hemodialysis (HR, 1.74), according to the study by the Taipei Medical University(12).

7. Severity of inflammation 
CRP concentration may be a potent objective predictor of pathological severity in appendicitis. Combination with the other diagnostic modalities may improve the diagnostic accuracy in predicting the severity of appendicitis(13).

8. Other risk factors
The principal factors contributing to perforation of appendix are: age of children, delays of surgical intervention, family anamnesis, social group and late recognition of symptoms of appendicitis(14).

9. Appendicolith
Presence of an appendicolith was associated with a 72% rate of recurrent appendicitis compared with a recurrence rate of 26% in those with no appendicolith (chi2 test, P < .004)(15).  


III. Complications and Diseases associated to Appendicitis
A. Complications
1. Pyogenic liver abscess [PLA]
Pyogenic liver abscess [PLA] is a rare and life-threatening disease in children. Appendicitis was the leading source of PLA in the pre-antibiotic era, but it essentially has been eliminated in recent times. There is a report of a 12-year old girl with PLA after laparotomy for perforated appendix. She developed persistent fever and respiratory distress post operatively. Physicians had an impression of pneumonia but abdominal ultrasound showed cystic mass with mobile internal echoes within the right lobe of the liver suggesting an abscess. Patient was successfully managed by percutaneous drainage under ultrasound guidance(16).

2. A ruptured appendix
Although the finding of appendiceal duplication is uncommon, its misdiagnosis and mismanagement may yield poor clinical outcomes and serious medicolegal consequences. Laparoscopic surgical exploration was performed on a 17-year-old male patient with right lower quadrant pain and a history of a previous appendectomy. Inspection of the cecum revealed a second appendix, which was retrocecal, ruptured, and gangrenous(17). Other study found that appendicitis is the most common abdominal condition leading to urgent surgery in children. With the goal of identifying signs and symptoms that will allow prompt diagnosis of rupture of the appendix and thus decrease associated morbidities, our aim was to determine factors associated with ruptured appendicitis in children diagnosed with appendicitis(17).


B. Diseases associated to Appendicitis
1. Thoracic empyema
Appendicitis and thoracic empyema are rarely presented together. There is a report of  a thoracic empyema due to bacterial translocation in a patient, after she underwent appendicectomy for nonperforated acute appendicitis, according tp the Ankara Training and Research Hospital(18).

2. De Garengeot hernia 
he presence of the appendix within a femoral hernia sac is a rare condition known as De Garengeot hernia. There is a report of a case of De Garengeot hernia with concomitant appendicitis, according to the University of Cagliari(19).

3. Simultaneous Meckel's diverticulitis
There is a report a case of a 24-year-old woman who was delivered via cesarean section at 39 weeks and presented in the puerperium with symptoms of worsening abdominal pain and septicaemia. Preoperative ultrasonography suggested the presence of a pelvic collection. Explorative laparotomy revealed the simultaneous presence of Meckel's diverticulitis and appendicitis without bowel perforation(20).

4. Acute myeloid leukemia
There is a report of a 59-year-old Caucasian female was admitted to the surgical service with acute right lower quadrant pain, nausea, and anorexia. She was noted to have leukocytosis, anemia, and thrombocytopenia. Abdominal imaging demonstrated appendicitis with retroperitoneal and mesenteric lymphadenopathy for which she underwent laparoscopic appendectomy. Peripheral smear, bone marrow biopsy, and surgical pathology of the appendix demonstrated acute myeloid leukemia (AML) with nonsuppurative appendicitis(21).

5.  Leukemia and lymphoma of the appendix
There is a report of a first detailed description of acute myeloid leukaemia involving the appendix, and three cases of lymphomatous infiltration of the appendix presenting with appendicitis(22).

6. Adenocarcinoma 
Acute inflammation of the appendix secondary to luminal obstruction is the chief reason for appendectomy. The rare association of a malignant neoplastic process with the inflammatory process is usually an unexpected finding and is often not diagnosed until the histologic study has been completed. There is a report of two patients with adenocarcinoma of the appendix(23).

 

IV. Misdiagnosis and diagnosis
A. Misdiagnosis
1. Diverticulitis 
According to the study by the Hôpital Saint-Joseph, appendicitis and diverticulitis of the colon are the two main causes of febrile acute abdomen in adults. Diagnosis from imaging (ultrasound and CT) is usually easy. However, an imaging procedure which is not suitable for the clinical situation and an examination performed with the wrong protocol are sources of error and must be avoided. Anatomical variants, inflammatory cancers, complicated forms (perforation, secondary occlusion of the small intestine, peripheral abscesses, fistulae, pylephlebitis, liver abscesses) and associated signs related to a peritoneal inflammatory reaction (reflex ileus, reactive ileitis or salpingitis) can also lead to a wrong diagnosis(24).

2. Visceral myopathy
Visceral myopathy is rare pathological condition of gastrointestinal tract with uncertain clinical presentation and unknown etiology. It is a very rare group of disease and poorly understood condition that may present with chronic or acute intestinal pseudo-obstruction and often mimic other more common gastrointestinal disease. VM should be considered as differential diagnosis whenever the patient presents with acute appendicitis, uncharacteristic abdominal symptoms, recurrent attacks of abdominal distention, and pain with no radiological evidence of intestinal obstruction, according to the First Hospital of Jilin University(25).

3. Malignant lymphoma
There is a report of a case of localized malignant lymphoma of the appendix associated with the histological features of acute inflammation that presented clinically as acute appendicitis(26).


4. Herniation pit
herniation pits of the right femoral neck should be considered a potential cause of right lower abdominal pain mimicking acute appendicitis, particularly if the psoas sign and obturator sign are positive and the patient is physically active(27).

5. Acute scrotum
Acute appendicitis presents typically with periumbilical pain that in a few hours settles at the right lower quadrant of the abdomen. Atypical presentations are common but association with acute scrotum is an extreme rarity(28).

6. Testicular mass
There is a report of a case where ultrasound demonstrated an inflamed appendix and a scrotal abscess, allowing the correct surgical management in a difficult clinical situation. In a child presenting with scrotal signs and vague lower abdominal symptoms, an ultrasound assessment of the right iliac fossa should always be performed(29).

7. Cystic lymphangiomas 
There is a report of a case of a 4-year-old boy who was admitted to our hospital because of the right lower quadrant acute abdominal pain suspect of acute appendicitis. At laparotomy, a giant, cystic, encapsulated and lipomatous mesenterial mass was found, 15 x 15 x 10 cm in size, infiltrating the jejunum. The tumor was located 70 cm from Treitz's ligament(30).



V. Preventions
1. A vegetarian diet
Compared with non-vegetarians, Western vegetarians have a lower mean BMI (by about 1 kg/m2), a lower mean plasma total cholesterol concentration (by about 0.5 mmol/l), and a lower mortality from IHD (by about 25%). They may also have a lower risk for some other diseases such as constipation, diverticular disease, gallstones and appendicitis, according to the study by the  University of Oxford(31). 

2. Dietary fiber
In the study of means of food diaries the average daily fiber consumption  in 31 patients with acute appendicitis and in 30 control patients, matched for age and sex with the average daily dietary fiber intake was 17.4 g in the group with appendicitis and 21.0 g in the control group, showed that the difference is statistically significant. Adjustment for the total energy intake in each instance did not change this conclusion. The results support the hypothesis that diet, in particular a lack of fiber, may be an important factor in the pathogenesis of acute appendicitis(32).

3. Less non-potato vegetables and fruit
 In the study of comparison of food consumption between the four countries, and between the health board areas of Eire and regions of Scotland, shows that appendicitis rates are highest in communities that consume more potatoes, sugar, and cereals, and less non-potato vegetables and fruit(33).

4. Green vegetables and tomatoes
In the study to assess the rates of acute appendicitis in 59 areas of England and Wales with consumption of different foods per caput, measured from household food purchases, showed that there was a statistically significant positive correlation with potato consumption and a negative correlation with non-potato vegetables. This negative correlation depended mainly on green vegetables and tomatoes. There was no consistently significant correlation with any other main food group. In particular the correlations with cereal foods, cereal fibre, and total dietary fibre were small and not significant. Green vegetables and tomatoes may protect against appendicitis, possibly through an effect on the bacterial flora of the appendix(34).


VI. Treatments
A. Treatment in conventional medicine perspective 
1. Laparoscopic and Open Appendectomy

In the study using the data from the 2007 to 2009 Taiwan National Health Insurance Research Database. The study sample included 65,339 patients, hospitalized with a discharge diagnosis of acute appendicitis (33.8% underwent laparoscopic appendectomy). A generalized estimated equation (GEE) was performed to explore the relationship between the use of laparoscopy and 30-day re-admission. Hierarchical linear regressions were performed to examine the relationship between the use of laparoscopy, the length of stay (LOS), and the cost per discharge, showed that a significantly lower proportion of patients undergoing laparoscopic appendectomies were re-admitted within 30 days of their index appendectomy, in comparison to patients undergoing open appendectomies (0.66% versus 1.925, p<0.001). Compared with patients undergoing open appendectomies, patients undergoing laparoscopic appendectomies had a shorter LOS (4.01 versus 5.33 days, p<0.001) and a higher cost per discharge (NT$40,554 versus NT$38,509, p<0.001. In 2007, the average exchange rate was US$1 = NT$31.0). GEE revealed that the odds ratio of 30-day readmission for patients undergoing laparoscopic appendectomy was 0.38 (95% CI = 0.33-0.46) that of patients undergoing open appendectomies, after adjusting for surgeon, hospital, and patient characteristics, as well as for the clustering effect of particular surgeons and the propensity score(35).
 
2. Draining an abscess before appendix surgery 
If in case if your appendix has burst and an abscess has formed around it. In the study to analyze retrospectively our experience with this disease to value the results of drainage of the abscess and appendectomy in one stage in presence of appendiceal abscesses, showed that preoperative ultrasonography showed an accuracy of 85.7% in detecting the presence of an abscess. Mean size of the abscesses were 5 cm (from a minimum of 3 cm to a maximum of 9 cm). The mean duration of surgical operation was 48 minutes (min 35'-max 95'), with a mean in-hospital stay of 6.2 days. Morbidity rate was 9% and was due in 75% of cases to wound infection and in 25% of cases to wound dehiscence. Neither major morbidity nor mortality were observed. In consideration of the results the authors conclude that even in presence of an appendiceal abscess, appendectomy with abscess drainage is not only a safe operation with a low morbidity rate but the procedure of choice allowing a significative reduction of hospitalization and health cost(36).

B. Treatment in Herbal medicine perspective 
1. Phaseolus angularis Wight (adzuki bean)
Phaseolus angularis Wight (adzuki bean) is an ethnopharmacologically well-known folk medicine that is prescribed for infection, edema, and inflammation of the joints, appendix, kidney and bladder in Korea, China and Japan. According to the study by the, Pa-EE dose-dependently suppressed the release of PGE(2) and NO in LPS-, Poly(I:C)-, and pam3CSK-activated macrophages. Phaseolus angularis ethanol extract (Pa-EE) strongly down-regulated LPS-induced mRNA expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2. Interestingly, Pa-EE markedly inhibited NF-κB, activator protein (AP)-1, and cAMP response element binding protein (CREB) activation; further, according to direct kinase assays and immunoblot analyses, Pa-EE blocked the activation of the upstream signaling molecules spleen tyrosine kinase (Syk), p38, and transforming growth factor β-activated kinase 1 (TAK1). Finally, orally administered Pa-EE clearly ameliorated EtOH/HCl-induced gastritis in mice(37).

2. Cinnamomum cassia 
Cinnamomum cassia Blume (Aceraceae) has been traditionally used to treat various inflammatory diseases such as gastritis. According to the study by the Sungkyunkwan University,  95% ethanol extract (Cc-EE) of Cinnamomum cassia exerts strong anti-inflammatory activity by suppressing Src/Syk-mediated NF-κB activation, which contributes to its major ethno-pharmacological role as an anti-gastritis remedy. Future work will be focused on determining whether the extract can be further developed as an anti-inflammatory drug(38).


 
C. Treatment in Traditional Chinese medicine perspective 
Traditional Chinese medicine on a weight basis, includes 190-210 parts of gentrin knotweed, 190-210 parts of sargentodoxa cuneata, 190-210 parts of common reed rhizome, and 140-160 parts of licorice. The medication  has the effects of clearing heat clearing and removing toxicity, antibiosis and antiphlogosis, dispelling wind and expelling parasites, dispersing blood stasis and relieving pain, removing edema and dissipating binds on acute and chronic appendicitis patients, can gradually restore the appendix tissue and the functions, causes less recurrence after a patient is cured, is convenient for use, can reduce pain, has no toxic or side effect, and is cheap and highly-effective, according to the Abstract of study (English, CN 102266504 B) posted in Ip.com(39).
Natural Remedies for Dementia Memory Loss Reversal
Guarantee to Stop Progression and Reverse Memory Loss in Alzheimer and  Dementia  with step by step instructions through Scientific Studies  within 2 Months or your Money back

Super foods Library, Eat Yourself Healthy With The Best of the Best Nature Has to Offer

For over 100 healthy recipes, http://diseases-researches.blogspot.ca/p/blog-page_17.html


Sources
(1) http://www.ncbi.nlm.nih.gov/pubmed/22878766 
(2) http://www.ncbi.nlm.nih.gov/pubmed/14730382 
(3) http://www.ncbi.nlm.nih.gov/pubmed/10888451 
(4) http://www.ncbi.nlm.nih.gov/pubmed/20937462 
(5) http://www.ncbi.nlm.nih.gov/pubmed/23599875 
(6) http://www.ncbi.nlm.nih.gov/pubmed/23397832
(7) http://www.ncbi.nlm.nih.gov/pubmed/23374326
(8) http://www.ncbi.nlm.nih.gov/pubmed/23311330 
(9) http://www.ncbi.nlm.nih.gov/pubmed/22948195 
(10) http://www.ncbi.nlm.nih.gov/pubmed/22858754 
(11) http://www.ncbi.nlm.nih.gov/pubmed/22849662
(12) http://www.ncbi.nlm.nih.gov/pubmed/22777056
(13) http://www.ncbi.nlm.nih.gov/pubmed/22234068 
(14) http://www.ncbi.nlm.nih.gov/pubmed/10965688
(15) http://www.ncbi.nlm.nih.gov/pubmed/16226993 
(16) http://www.ncbi.nlm.nih.gov/pubmed/19606202 
(17) http://www.ncbi.nlm.nih.gov/pubmed/22531191 
(18) http://www.ncbi.nlm.nih.gov/pubmed/23581268 
(19) http://www.ncbi.nlm.nih.gov/pubmed/23578413
(20) http://www.ncbi.nlm.nih.gov/pubmed/23578408  
(21) http://www.ncbi.nlm.nih.gov/pubmed/23840984 
(22) http://www.ncbi.nlm.nih.gov/pubmed/9393590 
(23) http://www.ncbi.nlm.nih.gov/pubmed/7069092
(24) http://www.ncbi.nlm.nih.gov/pubmed/23759294 
(25) http://www.ncbi.nlm.nih.gov/pubmed/23738185
(26) http://www.ncbi.nlm.nih.gov/pubmed/16442000 
(27)  http://www.ncbi.nlm.nih.gov/pubmed/23837953
(28) http://www.ncbi.nlm.nih.gov/pubmed/21816859
(29) http://www.ncbi.nlm.nih.gov/pubmed/11089472
(30) http://www.ncbi.nlm.nih.gov/pubmed/23837284
(31) http://www.ncbi.nlm.nih.gov/pubmed/10466166
(32) http://www.ncbi.nlm.nih.gov/pubmed/6305309
(33) http://www.ncbi.nlm.nih.gov/pubmed/3668458
(34) http://www.ncbi.nlm.nih.gov/pubmed/3008904
(35) http://www.ncbi.nlm.nih.gov/pubmed/23874710
(36) http://www.ncbi.nlm.nih.gov/pubmed/9228826
(37) http://www.ncbi.nlm.nih.gov/pubmed/21821108
(38) http://www.ncbi.nlm.nih.gov/pubmed/22155395
(39) http://ip.com/patfam/en/45049084

Tuesday, April 2, 2013

Magnesium



Magnesium
Magnesium is the eleventh most abundant element by mass in the human body. The adult body content is 25 g distributed in the skeleton and soft tissues. The chemical is essential in manipulating important biological polyphosphate such as ATP, DNA, and RNA and in functionming enzymes(a).
A. Magnesium and hypertension
B. Magnesium sulphate  
C. Magnesium deficiency complications
D. Magnesium and Asthma
Magnesium and Type II diabetes
1. High dietary magnesium intake is associated with low insulin resistance in the Newfoundland population
In the study to investigate the association between magnesium intake and IR in normal-weight (NW), overweight (OW) and obese (OB) along with pre- and post- menopausal women, showed that subjects with the highest intakes of dietary magnesium had the lowest levels of circulating insulin, HOMA-IR, and HOMA-ß and subjects with the lowest intake of dietary magnesium had the highest levels of these measures, suggesting a dose effect. Multiple regression analysis revealed a strong inverse association between dietary magnesium with IR. In addition, adiposity and menopausal status were found to be critical factors revealing that the association between dietary magnesium and IR was stronger in OW and OB along with Pre-menopausal women(1).

2. Magnesium intake and risk of type 2 diabetes
In the study to assess the association between magnesium intake and risk of type 2 diabetes with retrieved studies published in any language by systematically searching MEDLINE from 1966 to February 2007 and by manually examining the references of the original articles, found that magnesium intake was inversely associated with incidence of type 2 diabetes. This finding suggests that increased consumption of magnesium-rich foods such as whole grains, beans, nuts, and green leafy vegetables may reduce the risk of type 2 diabetes(2).

3. Fiber and magnesium intake and incidence of type 2 diabetes
In the study to examine associations between fiber and magnesium intake and risk of type 2 diabetes and summarized existing prospective studies by meta-analysis, found that during 176 117 person-years of follow-up, we observed 844 incident cases of type 2 diabetes in the European Prospective Investigation Into Cancer and Nutrition-Potsdam. Higher cereal fiber intake was inversely associated with diabetes risk (RR for extreme quintiles, 0.72 [95% confidence interval [CI], 0.56-0.93]), while fruit fiber (0.89 [95% CI, 0.70-1.13]) and vegetable fiber (0.93 [95% CI, 0.74-1.17]) were not significantly associated. Meta-analyses showed a reduced diabetes risk with higher cereal fiber intake (RR for extreme categories, 0.67 [95% CI, 0.62-0.72]), but no significant associations for fruit (0.96 [95% CI, 0.88-1.04]) and vegetable fiber (1.04 [95% CI, 0.94-1.15]). Magnesium intake was not related to diabetes risk in the European Prospective Investigation Into Cancer and Nutrition-Potsdam (RR for extreme quintiles, 0.99 [95% CI, 0.78-1.26]); however, meta-analysis showed a significant inverse association (RR for extreme categories, 0.77 [95% CI, 0.72-0.84])(3).

4. Dietary calcium and magnesium, major food sources, and risk of type 2 diabetes in U.S. black women
In a a prospective cohort study including 41,186 participants of the Black Women's Health Study without a history of diabetes who completed validated food frequency questionnaires at baseline, during 8 years of follow-up (1995-2003), we documented 1,964 newly diagnosed cases of type 2 diabetes, showed that
a diet high in magnesium-rich foods, particularly whole grains, is associated with a substantially lower risk of type 2 diabetes in U.S. black women(4).

5. Serum and dietary magnesium and the risk for type 2 diabetes mellitus
In the study to assess the risk for type 2 diabetes associated with low serum magnesium level and low dietary magnesium intake in a cohort of nondiabetic middle-aged adults (N = 12,128) from the Atherosclerosis Risk in Communities Study during 6 years of follow-up, found that aassessed the risk for type 2 diabetes associated with low serum magnesium level and low dietary magnesium intake in a cohort of nondiabetic middle-aged adults (N = 12,128) from the Atherosclerosis Risk in Communities Study during 6 years of follow-up(5).

6.  Associations of serum and urinary magnesium with the pre-diabetes, diabetes and diabetic complications in the Chinese Northeast population
In the study to investigate the association of Mg level in the serum or urine of the patients, lived in the Northeast areas of China, with either pre-diabetes or diabetes with and without complications, from January 2010 to October 2011, patients with type 1 diabetes (T1D, n = 25), type 2 diabetes (T2D, n = 137), impaired fasting glucose (IFG, n = 12) or impaired glucose tolerance (IGT, n = 15), and age/gender matched control (n = 50) enrolled in the First Hospital of Jilin University, showed that serum Mg levels in the patients with IGT, IFG, T2D, and T1D were significantly lower than that of control. The urinary Mg levels were significantly increased only in T2D and T1D patients compared to control. There was no difference for these two changes among T2D with and without complications; In addition, there was a significantly positive correlation of serum Mg levels with serum Ca levels only in T2D patients, and also a significantly positive correlation of urinary Mg levels with urinary Ca levels in control, IGT patients, and T2D patients. Simvastatin treatment in T2D patients selectively reduced serum Ca levels and urinary Mg levels(6).

7. Efficacy and safety of oral magnesium supplementation in the treatment of depression in the elderly with type 2 diabetes
In the study to evaluate the efficacy and safety of oral magnesium supplementation, with magnesium chloride (MgCl2), in the treatment of newly diagnosed depression in the elderly with type 2 diabetes and hypomagnesemia, found that at baseline, there were no differences by age (69 +/- 5.9 and 66.4 +/- 6.1 years, p = 0.39), duration of diabetes (11.8 +/- 7.9 and 8.6 +/- 5.7 years, p = 0.33), serum magnesium levels (1.3 +/- 0.04 and 1.4 +/- 0.04 mg/dL, p = 0.09), and Yasavage and Brink Score (17.9 +/- 3.9 and 16.1 +/- 4.5 point, p = 0.34) in the groups with MgCl2 and imipramine, respectively. At end of follow-up, there were no significant differences in the Yasavage and Brink score (11.4 +/- 3.8 and 10.9 +/- 4.3, p = 0.27) between the groups in study; whereas serum magnesium levels were significantly higher in the group with MgCl2 (2.1 +/- 0.08 mg/dL) than in the subjects with imipramine (1.5 +/- 0.07 mg/dL), p < 0.0005. In conclusion, MgCl2 is as effective in the treatment of depressed elderly type 2 diabetics with hypomagnesemia as imipramine 50 mg daily(7).

8. The effect of magnesium supplementation on primary insomnia in elderly
In a double-blind randomized clinical trial conducted in 46 elderly subjects, randomly allocated into the magnesium or the placebo group and received 500 mg magnesium or placebo daily for 8 weeks with Questionnaires of insomnia severity index (ISI), physical activity, and sleep log completed at baseline and after the intervention period, showed that no significant differences were observed in assessed variables between the two groups at the baseline. As compared to the placebo group, in the experimental group, dietary magnesium supplementation brought about statistically significant increases in sleep time (P = 0.002), sleep efficiency (P = 0.03), concentration of serum renin (P < 0.001), and melatonin (P = 0.007), and also resulted in significant decrease of ISI score (P = 0.006), sleep onset latency (P = 0.02) and serum cortisol concentration (P = 0.008). Supplementation also resulted in marginally between-group significant reduction in early morning awakening (P = 0.08) and serum magnesium concentration (P = 0.06). Although total sleep time (P = 0.37) did not show any significant between-group differences(8).

9. Correlation of magnesium intake with metabolic parameters, depression and physical activity in elderly type 2 diabetes patients
In a cross-sectional study involved 210 type 2 diabetes patients aged 65 years and above with participants were interviewed to obtain information on lifestyle and 24-hour dietary recall. Assessment of depression was based on DSM-IV criteria, showed that among all patients, 88.6% had magnesium intake which was less than the dietary reference intake, and 37.1% had hypomagnesaemia. Metabolic syndromes and depression were associated with lower magnesium intake (p < 0.05). A positive relationship was found between magnesium intake and HDL-cholesterol (p = 0.005). Magnesium intake was inversely correlated with triglyceride, waist circumference, body fat percent and body mass index (p < 0.005). After controlling confounding factor, HDL-cholesterol was significantly higher with increasing quartile of magnesium intake (p for trend = 0005). Waist circumference, body fat percentage, and body mass index were significantly lower with increase quartile of magnesium intake (p for trend < 0.001). The odds of depression, central obesity, high body fat percentage, and high body mass index were significantly lower with increasing quartile of magnesium intake (p for trend < 0.05). In addition, magnesium intake was related to high physical activity level and demonstrated lower serum magnesium levels. Serum magnesium was not significantly associated with metabolic parameters(9).

10. Depressive symptoms and hypomagnesemia in older diabetic subjects
In the study to to assess the hypothesis that hypomagnesemia is associated with depressive symptoms in older people with diabetes, showed that serum magnesium levels were significantly lower among depressive than control diabetic subjects (0.74 +/- 0.25 vs. 0.86 +/- 0.29 mmol/L, p = 0.02). Twenty four (43.6%) and 7 (12.7%) individuals in the case and control group exhibited low serum magnesium levels (p = 0.0006). The adjusted logistic regression analysis showed an independent association between hypomagnesemia and depressive symptoms (OR 1.79; CI(95%) 1.1-6.9, p = 0.03)(10).

Sources
(1) http://www.ncbi.nlm.nih.gov/pubmed/23472169
(2) http://www.ncbi.nlm.nih.gov/pubmed/17645588
(3) http://www.ncbi.nlm.nih.gov/pubmed/17502538
(4) http://www.ncbi.nlm.nih.gov/pubmed/17003299
(5) http://www.ncbi.nlm.nih.gov/pubmed/10527292
(6) http://www.ncbi.nlm.nih.gov/pubmed/23418599
(7) http://www.ncbi.nlm.nih.gov/pubmed/19271419
(8) http://www.ncbi.nlm.nih.gov/pubmed/23853635
(9) http://www.ncbi.nlm.nih.gov/pubmed/22695027
(10) http://www.ncbi.nlm.nih.gov/pubmed/17845894

Magnesium and Muscles
1. Magnesium for skeletal muscle cramps
Skeletal muscle cramps are common and often presented to physicians in association with pregnancy, advanced age, exercise or disorders of the motor neuron (such as amyotrophic lateral sclerosis). In a andomized controlled trials (RCTs) of magnesium supplementation (in any form) to prevent skeletal muscle cramps in any patient group (i.e. all clinical presentations of cramp) and to considere comparisons of magnesium with no treatment, placebo control, or other therapy, found that it is unlikely that magnesium supplementation provides clinically meaningful cramp prophylaxis to older adults experiencing skeletal muscle cramps. In contrast, for those experiencing pregnancy-associated rest cramps the literature is conflicting and further research in this patient population is needed. We found no randomized controlled trials evaluating magnesium for exercise-associated muscle cramps or disease state-associated muscle cramps (for example amyotrophic lateral sclerosis/motor neuron disease)(1).

2. Clinical aspects and treatment of calf muscle cramps during pregnancy
According to the study by Riss P, Bartl W, and Jelincic D., muscle cramps were noticed most often in the second half of pregnancy. Gravidae with muscle cramps were on the average older and of higher parity; there was no relationship between muscle cramps and complications during pregnancy or unfavorable fetal outcome. In an uncontrolled therapeutic trial 21 women with muscle cramps received 1,8 g monomagnesium-aspartate twice daily per mouth for 4 weeks. 21 women with muscle cramps had no therapy. 4 weeks after the initiation of magnesium therapy 19/21 women were free of symptoms, compared to only 7/21 patients in the control group. Muscle cramps during pregnancy do not have to be considered a risk factor; they can be significantly improved by the administration of oral magnesium(2).

3. The effect of oral magnesium substitution on pregnancy-induced leg cramps
In the study to  to determine whether women with pregnancy-related leg cramps would benefit from oral magnesium supplementation, indicated that serum magnesium levels in these patients were at or below the lower reference limit, as is also often the case in healthy pregnant patients. Oral magnesium substitution decreased leg cramp distress (p < 0.05 compared with the placebo group, p < 0.001 compared with initial complaints), but did not significantly increase serum magnesium levels, excess magnesium being excreted as measured by an increase in urinary magnesium levels (p < 0.002). Oral magnesium supplementation seems to be a valuable therapeutic tool in the treatment of pregnancy-related leg cramps(3).

4. Pathophysiology and therapy of magnesium deficiency in pregnancy
In the study to determine serum magnesium(Mg)-levels in 67 pregnant women in late pregnancy. 42 gravidae complained of nightly muscle cramps; 21 of them received 1.8 g monomagnesiumaspartate twice daily per mouth for 4 weeks, found that serum Mg-levels were lower in pregnant women as compared to a control group of non pregnant women. Gravidae complaining of muscle cramps had significantly lower serum Mg-levels than women without muscle cramps. The administration of Mg was associated with a significant rise in serum Mg-levels as early as 2 weeks after the initiation of therapy.The Our study indicates that nightly muscle cramps during pregnancy might be a sign of a latent magnesium deficiency which can be influenced by oral magnesium(4).

5. Serum magnesium level in preterm labour
Preterm labour, (PTL) defined as labour after 28 weeks but before 37 completed week of gestation, is an ill omen for our country as the incidence is 5-10% leading to 70-80% of perinatal deaths. According to the study by the  Indira Gandhi Institute of Medical Sciences, varied hypomagnesemia was observed in Preterm labour cases (1.47 mg/dl +/- 0.22 S.D.), normal value of serum magnesium was found in normal non-pregnant ladies and slightly low value were observed in pregnant ladies of same gestational age. Age and parity had no significant effect on serum magnesium level in our study. As far as socio-economic study is concerned, it was found to be higher in high socio-economic group and low in lower group. Thus from this study it can be concluded that estimation of serum magnesium in pregnancy may prove to be a valuable tool in predicting preterm onset of labour(5).

6. Relationship between hypermagnesaemia in preterm labour and adverse health outcomes in babies
In the study of the Magnesium and Neurologic Endpoints Trial (the so-called MagNET Trial) undertaken to establish whether the antenatal usage of magnesium sulphate could protect neonates from having adverse neurologic outcomes, showed that unfortunately, the trial was suspended after 15 months of enrolment because of excess total paediatric mortality among those exposed to magnesium sulphate. Following our original report and contrary to the original hypotheses, additional analyses of our data have actually shown a statistically significant increase in the risk of neonatal intraventricular hemorrhage, as well as total adverse paediatric outcomes, among those with higher levels of ionized magnesium at delivery. Nonetheless, it has been postulated, but not established, that anions of magnesium other than sulphate could have a more benign, or even beneficial, effect on health outcomes in the neonate(6).

7. Nocturnal leg cramps
Up to 60 percent of adults report that they have had nocturnal leg cramps. The recurrent, painful tightening usually occurs in the calf muscles and can cause severe insomnia. According to the study by the St. Mark's Family Medicine Residency, nocturnal leg cramps are associated with vascular disease, lumbar canal stenosis, cirrhosis, hemodialysis, pregnancy, and other medical conditions. Medications that are strongly associated with leg cramps include intravenous iron sucrose, conjugated estrogens, raloxifene, naproxen, and teriparatide. A history and physical examination are usually sufficient to differentiate nocturnal leg cramps from other conditions, such as restless legs syndrome, claudication, myositis, and peripheral neuropathy. Laboratory evaluation and specialized testing usually are unnecessary to confirm the diagnosis. Limited evidence supports treating nocturnal leg cramps with exercise and stretching, or with medications such as magnesium, calcium channel blockers, carisoprodol, or vitamin B(12). Quinine is no longer recommended to treat leg cramps(7).

8. Stretching before sleep reduces the frequency and severity of nocturnal leg cramps in older adults
According to the study by the Hanze University of Applied Sciences, in the study of nighty adults aged over 55 years with nocturnal leg cramps who were not being treated with quinine, with the experimental group performed stretches of the calf and hamstring muscles nightly, immediately before going to sleep, for six weeks. The control group performed no specific stretching exercises. Both groups continued other usual activities, showed that nightly stretching before going to sleep reduces the frequency and severity of nocturnal leg cramps in older adults(8).

9. The effect of magnesium infusion on rest cramps
Rest cramps (also known as nocturnal leg cramps) are very common in a geriatric population. In a double blind, placebo controlled randomized controlled trial conducted on 46 community-dwelling older adult (69.3 ± 7.7 years) rest cramp sufferers to determine whether 5 consecutive days infusion of 20-mmol (5 g) magnesium sulfate would reduce the frequency of leg cramps per week in the 30 days immediately pre and post infusions and whether the response to treatment varied with the extent to which infused magnesium was retained (as measured by 24-hour urinary magnesium excretion), found that intravenous magnesium infusion did not reduce the frequency of leg cramps in a group of older adult rest cramp sufferers regardless of the extent to which infused magnesium was retained. Although oral magnesium is widely marketed to older adults for the prophylaxis of leg cramps, our data suggest that magnesium therapy is not indicated for the treatment of rest cramps in a geriatric population(9).

10. Muscle cramps--differential diagnosis and therapy
Calf cramps are sudden, involuntary, painful contractions of part of or the entire calf muscle that are visible, persist for seconds to minutes and then spontaneously resolve. According to the study by Kompetenzzentrum für Bewegungsstörungen, Paracelsusklinik Zwickau, Muscle cramps can occur with no identifiable cause, and are then referred to as common calf cramps. They may also be symptoms associated with diseases of the peripheral and central nervous system and muscle diseases. They also occur in association with metabolic disorders. In such cases the cramps are more extensive, intense and persist for longer. Cramp-fasciculation-myalgia syndrome additionally involves paresthesias and other signs of hyperexcitability of peripheral nerves. The recommended treatment for patients with frequent calf cramps causing significant impairment of well-being is oral administration of quinidine and/or botulinum toxin treatment of the calf muscles. During pregnancy both products are contraindicated, while probatory administration of magnesium is indicated(10).


Sources
(1) http://www.ncbi.nlm.nih.gov/pubmed/22972143
(2) http://www.ncbi.nlm.nih.gov/pubmed/6553557
(3) http://www.ncbi.nlm.nih.gov/pubmed/7631676
(4) http://www.ncbi.nlm.nih.gov/pubmed/6891868
(5) http://www.ncbi.nlm.nih.gov/pubmed/15022938
(6) http://www.ncbi.nlm.nih.gov/pubmed/12635881
(7) http://www.ncbi.nlm.nih.gov/pubmed/22963024
(8) http://www.ncbi.nlm.nih.gov/pubmed/22341378
(9) http://www.ncbi.nlm.nih.gov/pubmed/21289017
(10) http://www.ncbi.nlm.nih.gov/pubmed/19402333

Magnesium deficiency
1. Magnesium metabolism and its disorders
Magnesium is the fourth most abundant cation in the body and plays an important physiological role in many of its functions. Magnesium balance is maintained by renal regulation of magnesium reabsorption. According to the study by the Department of Chemical Pathology, St Thomas' Hospital, magnesium deficiency and hypomagnesaemia can result from a variety of causes including gastrointestinal and renal losses. Magnesium deficiency can cause a wide variety of features including hypocalcaemia, hypokalaemia and cardiac and neurological manifestations. Chronic low magnesium state has been associated with a number of chronic diseases including diabetes, hypertension, coronary heart disease, and osteoporosis. The use of magnesium as a therapeutic agent in asthma, myocardial infarction, and pre-eclampsia is also discussed. Hypermagnesaemia is less frequent than hypomagnesaemia and results from failure of excretion or increased intake. Hypermagnesaemia can lead to hypotension and other cardiovascular effects as well as neuromuscular manifestations(1).

2. Implications of magnesium deficiency in type 2 diabetes
Magnesium is the fourth most abundant cation in the body and plays an important physiological role in many of its functions. It plays a fundamental role as a cofactor in various enzymatic reactions involving energy metabolism. According to the study by the Punjab Agricultural University, magnesium is a cofactor of various enzymes in carbohydrate oxidation and plays an important role in glucose transporting mechanism of the cell membrane. It is also involved in insulin secretion, binding, and activity. Magnesium deficiency and hypomagnesemia can result from a wide variety of causes, including deficient magnesium intake, gastrointestinal, and renal losses. Chronic magnesium deficiency has been associated with the development of insulin resistance. The present review discusses the implications of magnesium deficiency in type 2 diabetes(2).


3. Magnesium (Mg) status in patients with cardiovascular diseases
Mg is an important cofactor for many enzymes especially those involved in phosphate transfer reactions. Mg is therefore essential in the regulation of the metabolism of other ions and cellular functionsé According to the study by the, deficiency has been shown to be associated with fatal cardiovascular diseases such as cardiac arrhythmias and coronary heart disease, as well as with risk factors for these diseases, such as hypertension, and diabetes mellitus. Our findings showed that serum total Mg was similar in all groups, but patients with arrhythmias and diabetes mellitus revealed lower levels of serum ionized Mg. On the other hand, patients with essential hypertension exhibited higher intraerythrocyte Mg concentrations than healthy controls(3).

4. Hypokalemia and hypomagnesemia in a cirrhotic patient. Correction of metabolic disorders by magnesium
According to the study by Bletry O, Certin M, Herreman G, Wechsler B, and Godeau P., there is a report of a case of a cirrhotic with severe hypokalemia (2 mEq/l) responding incompletely to attempts at correction by classical treatments. The findings of a serum and red cell magnesium deficiency led to administration of this electrolyte which proved efficacous. They then recall the mechanism of hypokalemia and hypomagnesemia in alcoholics, study the possible relationship between these abnormalities, their noxious effects and suggest a treatment(4).

5. Symptomatic hypomagnesemia in children

Hypocalcemia and hyperphosphatemia suggesting impaired parathyroid function were the most common electrolyte disorders. Hypokalemia was also frequently noted. The related symptoms including seizure, tetany, and weakness were common. According to the National Taiwan University Hospital, hypocalcemia and hyperphosphatemia suggesting impaired parathyroid function were the most common electrolyte disorders. Hypokalemia was also frequently noted. The related symptoms including seizure, tetany, and weakness were common. Drug-induced renal magnesium wasting was the most common cause of symptomatic hypomagnesemia, and tended to occur in older children using aminoglycoside, furosemide, and amphotericin-B. The associated gastrointestinal causes might add a minor contribution to the development of hypomagnesemia. Analyses of PTH levels in 13 children suggested that inhibition of PTH synthesis or secretion was responsible for hypomagnesemic hypocalcemia in most patients. However, peripheral PTH resistance might also account for the mechanism in a few patients. In most patients, symptomatic hypomagnesemia was transient, and improved after magnesium provision. Only one child with congenital renal magnesium wasting and two with primary hypomagnesemia needed long-term magnesium treatment(5).

6. Hypomagnesemia: an evidence-based approach to clinical cases
Hypomagnesemia is defined as a serum magnesium level less than 1.8 mg/dL (< 0.74 mmol/L). Hypomagnesemia may result from inadequate magnesium intake, increased gastrointestinal or renal losses, or redistribution from extracellular to intracellular space. Increased renal magnesium loss can result from genetic or acquired renal disorders. According to the Rush University Medical Center, Chicago, most patients with hypomagnesemia are asymptomatic and symptoms usually do not arise until the serum magnesium concentration falls below 1.2 mg/dL. One of the most life-threatening effects of hypomagnesemia is ventricular arrhythmia. The first step to determine the likely cause of the hypomagnesemia is to measure fractional excretion of magnesium and urinary calcium-creatinine ratio. The renal response to magnesium deficiency due to increased gastrointestinal loss is to lower fractional excretion of magnesium to less than 2%. A fractional excretion above 2% in a subject with normal kidney function indicates renal magnesium wasting. Barter syndrome and loop diuretics which inhibit sodium chloride transport in the ascending loop of Henle are associated with hypokalemia, metabolic alkalosis, renal magnesium wasting, hypomagnesemia, and hypercalciuria. Gitelman syndrome and thiazide diuretics which inhibit sodium chloride cotransporter in the distal convoluted tubule are associated with hypokalemia, metabolic alkalosis, renal magnesium wasting, hypomagnesemia, and hypocalciuria. Familial renal magnesium wasting is associated with hypercalciuria, nephrocalcinosis, and nephrolithiasis. Asymptomatic patients should be treated with oral magnesium supplements. Parenteral magnesium should be reserved for symptomatic patients with severe magnesium deficiency (< 1.2 mg/dL). Establishment of adequate renal function is required before administering any magnesium supplementation(6).

7. Abnormal renal magnesium handling
The normal fractional urinary excretion of filtered magnesium is about 5%. In magnesium deficiency in man, the kidneys can normally reduce the 24-hour urinary magnesium excretion to less than 1 mmol (24 mg) via unknown mechanisms, and initially without a fall in plasma magnesium concentration.  According to the University of British Columbia, congenital renal magnesium wasting occurs in several syndromes including Bartter's syndrome in which it is associated with hypercalciuria, and the defect may be in the thick ascending limb of Henle's loop, and Gitelman's syndrome in which there is hypocalciuria, and the defect may be in the distal convoluted tubule. Other causes of renal magnesium wasting include diabetes mellitus, hypercalcemia and diuretics. Magnesium wasting may also result from various toxicities including those of cis-platinum, in which the biochemical features resemble Gitelman's syndrome, and those of aminoglycosides, pentamidine and cyclosporin. Calcitriol deficiency may also contribute to renal magnesium wasting in some circumstances. Mild hypermagnesemia may occur in familial hypocalciuric hypercalcemia and may reflect abnormal sensitivity of the loop of Henle to calcium and magnesium ions. By contrast, the hypermagnesemia that occurs in chronic renal failure results from the reduced glomerular filtration of magnesium(7).

8. Hypomagnesemia: renal magnesium handling
Magnesium is an important constituent of the intracellular space that affects a number of intracellular and whole body functions. Magnesium balance depends on intake and renal excretion, which is regulated mainly in the thick ascending limb of the loop of Henle.  According to the University of Pennsylvania School of Medicine, hypomagnesemia may result from gastrointestinal losses or renal losses, the latter due to primary renal magnesium wasting or in association with sodium loss. Hypomagnesemia may arise together with and contribute to the persistence of hypokalemia and hypocalcemia. The major direct toxicity of hypomagnesemia is cardiovascular. When urgent correction of hypomagnesemia is required, as with myocardial ischemia, post cardiopulmonary bypass, and torsades de pointes, intravenous or intramuscular magnesium sulfate should be used. Oral magnesium preparations are available for chronic use(8).

9. Magnesium metabolism in health and disease
Magnesium (Mg) is the main intracellular divalent cation, and under basal conditions the small intestine absorbs 30-50% of its intake. Normal serum Mg ranges between 1.7-2.3 mg/dl (0.75-0.95 mmol/l), at any age. According to the study by Hospital Italiano de Buenos Aires, eEven though eighty percent of serum Mg is filtered at the glomerulus, only 3% of it is finally excreted in the urine. Altered magnesium balance can be found in diabetes mellitus, chronic renal failure, nephrolithiasis, osteoporosis, aplastic osteopathy, and heart and vascular disease. Three physiopathologic mechanisms can induce Mg deficiency: reduced intestinal absorption, increased urinary losses, or intracellular shift of this cation. Intravenous or oral Mg repletion is the main treatment, and potassium-sparing diuretics may also induce renal Mg saving. Because the kidney has a very large capacity for Mg excretion, hypermagnesemia usually occurs in the setting of renal insufficiency and excessive Mg intake. Body excretion of Mg can be enhanced by use of saline diuresis, furosemide, or dialysis depending on the clinical situation(9).

10. Magnesium deficiency: pathogenesis, prevalence, and clinical implications
Hypomagnesemia is probably the most underdiagnosed electrolyte deficiency in current medical practice. Patients with cardiovascular disease who are at greatest risk for the development of magnesium deficiency are those treated with diuretics or digitalis. According to the study by the, both potassium and magnesium deficiencies are associated with increased ventricular ectopy and may increase the risk of sudden unexpected death. Refractory potassium repletion can be caused by concomitant magnesium depletion, and can be corrected with magnesium supplementation. Routine serum magnesium determination is recommended whenever the testing of electrolyte levels is required, especially in patients taking diuretic drugs or digitalis. Because hypomagnesemia is not necessarily present in a magnesium-deficient state, it is recommended that both potassium and magnesium be repleted in patients with hypokalemia. Potassium-/magnesium-sparing diuretics may be helpful in the prevention of these electrolyte deficiencies(10).

Sources
(1) http://www.ncbi.nlm.nih.gov/pubmed/18568054
(2) http://www.ncbi.nlm.nih.gov/pubmed/19629403
(3) http://www.ncbi.nlm.nih.gov/pubmed/10375959
(4) http://www.ncbi.nlm.nih.gov/pubmed/198892
(5) http://www.ncbi.nlm.nih.gov/pubmed/9926514
(6) http://www.ncbi.nlm.nih.gov/pubmed/20081299
(7) http://www.ncbi.nlm.nih.gov/pubmed/8264509
(8) http://www.ncbi.nlm.nih.gov/pubmed/9459289
(9) http://www.ncbi.nlm.nih.gov/pubmed/19274487
(10) http://www.ncbi.nlm.nih.gov/pubmed/3565424

Magnesium and heart failure
1. Significance of magnesium in congestive heart failure
Electrolyte balance has been regarded as a factor important to cardiovascular stability, particularly in congestive heart failure. According to the study by the Irvine Medical Center,, magnesium is important as a cofactor in several enzymatic reactions contributing to stable cardiovascular hemodynamics and electrophysiologic functioning. Its deficiency is common and can be associated with risk factors and complications of heart failure. Typical therapy for heart failure (digoxin, diuretic agents, and ACE inhibitors) are influenced by or associated with significant alteration in magnesium balance. Magnesium therapy, both for deficiency replacement and in higher pharmacologic doses, has been beneficial in improving hemodynamics and in treating arrhythmias. Magnesium toxicity rarely occurs except in patients with renal dysfunction(1).

2. Magnesium in congestive heart failure, acute myocardial infarction and dysrhythmias
Magnesium plays an important role in the functioning of the cardiovascular system. According to the study by the Hackettstown Community Hospital, a decrease in magnesium has been linked with tachydysrhythmias, increased mortality in patients with congestive heart failure, and increased mortality after an acute myocardial infarction. The research shows that the use of magnesium supplements in these situations may be beneficial for treating and preventing life-threatening conditions. Magnesium supplements can be administered safely either orally or parenterally depending on the situation(2).

3. Potassium and magnesium depletions in congestive heart failure--pathophysiology, consequences and replenishment
Congestive heart failure (CHF) is becoming more frequent worldwide. According to the study by the Volgograd State Medical University, both potassium (K) and magnesium (Mg) deficiencies are common and can be associated with risk factors and complications of heart failure (HF). The major causes of K and Mg depletions are the effects of compensatory neuroendocrine mechanisms (activation of the renin-angiotensin-aldosterone and sympathoadrenergic systems), digoxin therapy, and administration of thiazide or loop diuretic therapy in CHF. Particular attention should be paid to K and Mg restoration in CHF, because of the consequences of both deficiencies (increased arrhythmic risk, vasoconstriction), and the co-supplementation of both ions is necessary in order to achieve K repletion. Mg and K should be employed as first-line therapy in digitalis intoxication and drug-related arrhythmias, and should be considered an important adjuvant therapy in diuretic treated patients with CHF. Another possibility to restore normal K and Mg status is usage of a K, Mg sparing diuretics(3).

4.  Calcium, magnesium and potassium intake and mortality in women with heart failure
In the study of the 161 808 participants in the Women's Health Initiative (WHI), we studied 3340 who experienced a HF hospitalisation to hypothesised that Ca, Mg and K would be inversely associated with mortality in people with HF, showed that intake was assessed using questionnaires on food and supplement intake. Hazard ratios (HR) and 95 % CI were calculated using Cox proportional hazards models adjusted for demographics, physical function, co-morbidities and dietary covariates. Over a median of 4·6 years of follow-up, 1433 (42·9 %) of the women died. HR across quartiles of dietary Ca intake were 1·00 (referent), 0·86 (95 % CI 0·73, 1·00), 0·88 (95 % CI 0·75, 1·04) and 0·92 (95 % CI 0·76, 1·11) (P for trend = 0·63). Corresponding HR were 1·00 (referent), 0·86 (95 % CI 0·71, 1·04), 0·88 (95 % CI 0·69, 1·11) and 0·84 (95 % CI 0·63, 1·12) (P for trend = 0·29), across quartiles of dietary Mg intake, and 1·00 (referent), 1·20 (95 % CI 1·01, 1·43), 1·06 (95 % CI 0·86, 1·32) and 1·16 (95 % CI 0·90, 1·51) (P for trend = 0·35), across quartiles of dietary K intake(4).

5. Functional reserves of the heart under conditions of alimentary magnesium deficit
In the study to assess functional reserves of myocardium in animals with deficit of magnesium during stress tests with magnesium deficit was modeled by 10 week long magnesium deficient diet, showed that
in animals with magnesium deficit we noted smaller increases of left ventricular pressure, myocardial contraction and relaxation rates under conditions of all functional tests, and of systolic arterial pressure during loading with volume and adrenaline. Lowering of myocardial reactivity under conditions of volume and adrenaline loading as well as isometric work load could constitute a basis of genesis of heart failure in magnesium deficit(5).

6. Complications of association magnesium sulfate with nicardipine during preeclampsia
There is a report of a heart failure and a collapse following concurrently administration of nicardipine and magnesium sulfate. These two drugs have potential negative inotropic effect and decrease systemic vascular resistance. Magnesium sulfate is the first-line treatment for the prevention of primary and recurrent eclamptic seizures. Combination with calcium channel blockers should be used cautiously, according to Service de gynécologie-obstétrique, centre hospitalier Franck-Joly(6).

7. Magnesium deficiency in heart failure patients with diabetes mellitus
In the study to assess the serum magnesium level in heart failure patients with diabetes mellitus conducted at Basic Medical Sciences Institute (BMSI), Jinnah Postgraduate Medical Centre (JPMC), Karachi, in collaboration with National Institute of Cardiovascular Diseases (NICVD), Karachi, from April 2003 to December 2003, showed that out of 45 cases of heart failure, 15 were diabetic. Of these, eleven (73.3%) had low serum magnesium (<1.8 mg/dl), one (6.7%) was within normal range (1.8-2.0 mg/dl) and three (20%) were in the high level range(>2.0 mg/dl). Low serum magnesium level in heart failure patients with diabetes mellitus(7).

8. Associations of dietary magnesium intake with mortality from cardiovascular disease
In the study to to investigate the relationship between dietary magnesium intake and mortality from cardiovascular disease in a population-based sample of Asian adults, based on dietary magnesium intake in 58,615 healthy Japanese aged 40-79 years, in the Japan Collaborative Cohort (JACC) Study, found that
dietary magnesium intake was inversely associated with mortality from hemorrhagic stroke in men and with mortality from total and ischemic strokes, coronary heart disease, heart failure and total cardiovascular disease in women. The multivariable hazard ratio (95% CI) for the highest vs. the lowest quintiles of magnesium intake after adjustment for cardiovascular risk factor and sodium intake was 0.49 (0.26-0.95), P for trend = 0.074 for hemorrhagic stroke in men, 0.68 (0.48-0.96), P for trend = 0.010 for total stroke, 0.47 (0.29-0.77), P for trend < 0.001 for ischemic stroke, 0.50 (0.30-0.84), P for trend = 0.005 for coronary heart disease, 0.50 (0.28-0.87), P for trend = 0.002 for heart failure and 0.64 (0.51-0.80), P for trend < 0.001 for total cardiovascular disease in women. The adjustment for calcium and potassium intakes attenuated these associations(8).

9. Parameters of mineral metabolism predict midterm clinical outcome in end-stage heart failure patients
In the study to investigate to which extent disturbances in mineral metabolism predict 90-day clinical outcome in end-stage heart failure patients, found that of the study cohort, 33.4% reached the primary endpoint. In detail, 19% were transplanted (the vast majority was listed "high urgent"), 8.8% died and 5.6% received MCS implants. As determined by logistic regression analysis, all aforementioned biochemical parameters were independently related to the primary endpoint. Results did not change substantially when transplanted patients were censored. A risk score (0-5 points) was developed. Of the patients who scored 5 points 89.5% reached the primary endpoint whereas of the patients with a zero score only 3.8% reached the primary endpoint. The data demonstrate that in addition to the well-known predictive value of disturbed sodium metabolism, derangements in calcium, phosphate, and magnesium metabolism also predict midterm clinical outcome in end-stage heart failure patients(9).

10. Magnesium and anabolic hormones in older men
Optimal nutritional and hormonal statuses are determinants of successful ageing. The age associated decline in anabolic hormones such as testosterone and insulin-like growth factor 1 (IGF-1) is a strong predictor of metabolic syndrome, diabetes and mortality in older men. Studies have shown that magnesium intake affects the secretion of total IGF-1 and increase testosterone bioactivity. In the study to  evaluate of 399 ≥65-year-old men of CHIANTI, a study population representative of two municipalities of Tuscany (Italy) with complete data on testosterone, total IGF-1, sex hormone binding globulin (SHBG), dehydroepiandrosterone sulphate (DHEAS) and serum magnesium levels, showed that
after adjusting for age, magnesium was positively associated with total testosterone (β ± SE, 34.9 ± 10.3; p = 0.001) and with total IGF-1 (β ± SE, 15.9 ± 4.8; p = 0.001). After further adjustment for body mass index (BMI), log (IL-6), log (DHEAS), log (SHBG), log (insulin), total IGF-1, grip strength, Parkinson's disease and chronic heart failure, the relationship between magnesium and total testosterone remained strong and highly significant (β ± SE, 48.72 ± 12.61; p = 0.001). In the multivariate analysis adjusted for age, BMI, log (IL-6), liver function, energy intake, log (insulin), log (DHEAS), selenium, magnesium levels were also still significantly associated with IGF-1 (β ± SE, 16.43 ± 4.90; p = 0.001) and remained significant after adjusting for total testosterone (β ± SE, 14.4 ± 4.9; p = 0.01). In a cohort of older men, magnesium levels are strongly and independently associated with the anabolic hormones testosterone and IGF-1.© 2011 The Authors. International Journal of Andrology © 2011 European Academy of Androlo(10).










Sources
(1)  http://www.ncbi.nlm.nih.gov/pubmed/8800040
(2) http://www.ncbi.nlm.nih.gov/pubmed/8106895 
(3) http://www.ncbi.nlm.nih.gov/pubmed/16272623 
(4)  http://www.ncbi.nlm.nih.gov/pubmed/23199414
(5) http://www.ncbi.nlm.nih.gov/pubmed/23098349 
(6) http://www.ncbi.nlm.nih.gov/pubmed/22981126 
(7) http://www.ncbi.nlm.nih.gov/pubmed/22360033 
(8) http://www.ncbi.nlm.nih.gov/pubmed/22341866 
(9) http://www.ncbi.nlm.nih.gov/pubmed/21905973 
(10) http://www.ncbi.nlm.nih.gov/pubmed/21675994 

Magnesium and Bone health 
1. Nutrition and bone health. Magnesium and bone
Magnesium is related to a number of biological enzymatic reactions such as catalytic role for the reaction of kinases in ATP production. On the other hand, magnesium is one of the essential minerals for bone formation. According to the study by the National Institute of Health and Nutrition., in the magnesium-deficient rats, apparent bone loss caused by increase in bone resorption and decrease in bone formation was observed. Although, epidemiological studies suggest that magnesium deficiency is one of the risk factor for osteoporosis, a relationship between magnesium intake and bone mineral density is not clear. This may be due to the differences in the population, decrease in sex hormone secretion, and the possibility that magnesium-deficiency is also accompanied with another nutrient insufficiency, e.g., calcium(1).

2. Skeletal and hormonal effects of magnesium deficiency
Magnesium (Mg) is the second most abundant intracellular cation where it plays an important role in enzyme function and trans-membrane ion transport. Mg deficiency has been associated with a number of clinical disorders including osteoporosis. Osteoporosis is common problem accounting for 2 million fractures per year in the United States at a cost of over $17 billion dollars. The average dietary Mg intake in women is 68% of the RDA, indicating that a large proportion of our population has substantial dietary Mg deficits. In the study to review the evidence for Mg deficiency-induced osteoporosis and potential reasons why this occurs, including a cumulative review of work in our laboratories and well as a review of other published studies linking Mg deficiency to osteoporosis, showed that pidemiological studies have linked dietary Mg deficiency to osteoporosis. As diets deficient in Mg are also deficient in other nutrients that may affect bone, studies have been carried out with select dietary Mg depletion in animal models. Severe Mg deficiency in the rat (Mg at <0.0002% of total diet; normal = 0.05%) causes impaired bone growth, osteopenia and skeletal fragility. This degree of Mg deficiency probably does not commonly exist in the human population. We have therefore induced dietary Mg deprivation in the rat at 10%, 25% and 50% of recommended nutrient requirement. We observed bone loss, decrease in osteoblasts, and an increase in osteoclasts by histomorphometry. Such reduced Mg intake levels are present in our population(2).

3. Magnesium deficiency and osteoporosis: animal and human observations
Although osteoporosis is a major health concern for our growing population of the elderly, there continues to be a need for well-designed clinical and animal studies on the link between dietary magnesium (Mg) intake and osteoporosis. According to the study by the University of Southern California and The Orthopaedic Hospital, Los Angeles, relatively few animal studies have assessed the skeletal and hormonal impact of long-term low Mg intake; however, these studies have demonstrated that Mg deficiency results in bone loss. Potential mechanisms include a substance P-induced release of inflammatory cytokines as well as impaired production of parathyroid hormone and 1,25-dihydroxyvitamin D. Abnormal mineralization of bones may also contribute to skeletal fragility. Clinical studies have often varied greatly in study design, subject age, menopausal status and outcome variables that were assessed. Most studies focused on female subjects, thus pointing to the great need for studies on aging males. According to the U.S. Department of Agriculture, the mean Mg intake for males and females is 323 and 228 mg/day, respectively. These intake levels suggest that a substantial number of people may be at risk for Mg deficiency, especially if concomitant disorders and/or medications place the individual at further risk for Mg depletion(3).

4. Nutrition and bone health. Magnesium-rich foods and bone health
According to the study by the Kagawa Nutrition University, about 60% of magnesium in human body is present in the skeleton. Various foods are containing magnesium. The major sources are foods of plant origin like grain, vegetable and pulse. EAR (estimated average requirement) and RDA (recommended dietary allowance) are set for age 1 year or over in Japan. There may be a large number of people who have inadequate intake of magnesium judging by the results of the national nutrition survey. Adequate intakes of magnesium and also other nutrients related bone health are desired(4).

5. Magnesium and osteoporosis: current state of knowledge and future research directions
According to the study by the University of Milan,, a  tight control of magnesium homeostasis seems to be crucial for bone health. On the basis of experimental and epidemiological studies, both low and high magnesium have harmful effects on the bones. Magnesium deficiency contributes to osteoporosis directly by acting on crystal formation and on bone cells and indirectly by impacting on the secretion and the activity of parathyroid hormone and by promoting low grade inflammation. Less is known about the mechanisms responsible for the mineralization defects observed when magnesium is elevated. Overall, controlling and maintaining magnesium homeostasis represents a helpful intervention to maintain bone integrity(5).

6. Magnesium metabolism in 4 to 8 year old children




Magnesium (Mg) is a key factor in bone health, but few studies have evaluated Mg intake or absorption and their relationship with bone mineral content (BMC) or bone mineral density (BMD) in children. In the study to measure Mg intake, absorption, and urinary excretion in a group of children 4 to 8 yrs of age, found that a small, but significantly greater Mg absorption efficiency (percentage absorption) in males than females (67 ± 12% vs 60 ± 8%, p = 0.02) but no difference in estimated net Mg retention (average of 37 mg/day in both males and females). Relating dietary Mg intake to estimated Mg retention showed that an intake of 133 mg/day, slightly above the current Estimated Average Requirement (EAR) of 110 mg/day led to a net average retention of 10 mg/day, the likely minimum growth-related need for this age group. Covariate analysis showed that Mg intake and total Mg absorption, but not calcium intake or total absorption were significantly associated with both total body BMC and BMD. These results suggest that usual Mg intakes in small children in the United States meet dietary requirements in most but not all children. Within the usual range of children's diets in the United States, dietary Mg intake and absorption may be important, relatively unrecognized factors in bone health(6).

7. Maternal first-trimester diet and childhood bone mass
In the study to assess the association of maternal first-trimester dietary intake during pregnancy with childhood bone mass, showed that higher first-trimester maternal protein, calcium, and phosphorus intakes and vitamin B-12 concentrations were associated with higher childhood bone mass, whereas carbohydrate intake and homocysteine concentrations were associated with lower childhood bone mass (all P-trend < 0.01). Maternal fat, magnesium intake, and folate concentrations were not associated with childhood bone mass. In the fully adjusted regression model that included all dietary factors significantly associated with childhood bone mass, maternal phosphorus intake and homocysteine concentrations most-strongly predicted childhood bone mineral content (BMC) [β = 2.8 (95% CI: 1.1, 4.5) and β = -1.8 (95% CI: -3.6, 0.1) g per SD increase, respectively], whereas maternal protein intake and vitamin B-12 concentrations most strongly predicted BMC adjusted for bone area [β = 2.1 (95% CI: 0.7, 3.5) and β = 1.8 (95% CI: 0.4, 3.2) g per SD increase, respectively(7).

8. Magnesium intake mediates the association between bone mineral density and lean soft tissue in elite swimmers
In the study to o understand if Mg intake mediates the association between bone mineral density (BMD) and lean soft tissue (LST) in elite swimmers, showed that males presented lower values than the normative data for BMD. Mg, phosphorus (P) and vitamin D intake were significantly lower than the recommended daily allowance. A linear regression model demonstrated a significant association between LST and BMD. When Mg intake was included, we observed that this was a significant, independent predictor of BMD, with a significant increase of 24% in the R(2) of the initial predictive model. When adjusted for energy, vitamin D, calcium, and P intake, Mg remained a significant predictor of BMD. In conclusion, young athletes engaged in low impact sports, should pay special attention to Mg intake, given its potential role in bone mineral mass acquisition during growth(8).

9. Bone and nutrition in elderly women: protein, energy, and calcium as main determinants of bone mineral density
In a cross-sectional study of 136 healthy Caucasian, postmenopausal women, free of medications known to affect bone, with bone mineral density (BMD) and body composition (lean and fat tissue) were measured by dual X-ray absorptiometry using specialized software for different skeletal sites, showed that independent influence of calcium, energy, and protein, examined separately and in multiple regression models on BMD of several skeletal sites. Magnesium, zinc and vitamin C were significantly related to BMD of several skeletal sites in multiple regression models (controlled for age, fat and lean tissue, physical activity and energy intake), each contributing more than 1% of variance. Serum PTH and 25(OH)D did not show significant association with bone mass(9).

10. Evaluation of magnesium intake and its relation with bone quality in healthy young Korean women
In a study to  evaluate Mg intake in healthy adults and its relation with bone quality of a total of 484 healthy young women in their early 20s, with anthropometric measurements, dietary intake survey using 3-day dietary records, and the bone quality of the calcaneus using quantitative ultrasounds were obtained and analyzed and average age, height, and weight of the subjects were respectively 20.20 years, 161.37 cm, and 54.09 kg, respectively, showed that the subject's average intake of energy was 1,543.19 kcal, and the average Mg intake was 185.87 mg/day. Mg intake per 1,000 kcal of consumed energy in our subjects was 119.85 mg. Subjects consumed 63.11% of the recommended intake for Mg. Food groups consumed with high Mg content in our subjects included cereals (38.62 mg), vegetables (36.97 mg), milk (16.82 mg), legumes (16.72 mg), and fish (16.50 mg). The level of Mg intake per 1,000 kcal showed significant correlation to the SOS in the calcaneus (r = 0.110, p < 0.05) after adjustment for age, BMI, and percent body fat. In addition, the intakes of Mg from potatoes (p < 0.001), legumes (p < 0.05), and fungi and mushrooms (p < 0.05) positively correlated with the SOS of the calcaneus. Tthe magnesium intake status of young Korean women aged 19-25 years is unsatisfactory. Improving dietary intake of Mg may positively impact bone quality in this population(10).

Natural Remedies for Dementia Memory Loss Reversal
Guarantee to Stop Progression and Reverse Memory Loss in Alzheimer and  Dementia  with step by step instructions through Scientific Studies  within 2 Months or your Money back

Super foods Library, Eat Yourself Healthy With The Best of the Best Nature Has to Offer

For over 100 healthy recipes, http://diseases-researches.blogspot.ca/p/blog-page_17.html


Sources
(1)  http://www.ncbi.nlm.nih.gov/pubmed/20445288
(2) http://www.ncbi.nlm.nih.gov/pubmed/19828898 
(3) http://www.ncbi.nlm.nih.gov/pubmed/15607643 
(4) http://www.ncbi.nlm.nih.gov/pubmed/20445289 
(5) http://www.ncbi.nlm.nih.gov/pubmed/23912329 
(6) http://www.ncbi.nlm.nih.gov/pubmed/23787702 
(7) http://www.ncbi.nlm.nih.gov/pubmed/23719545 
(8) http://www.ncbi.nlm.nih.gov/pubmed/23015157 
(9) http://www.ncbi.nlm.nih.gov/pubmed/12700617 
(10) http://www.ncbi.nlm.nih.gov/pubmed/21465282

Thursday, March 21, 2013

Dietary Mineral Cobalt

Cobalt is one of many essential mineral needed by our body  in very small amounts to enhance productions of red blood cell and the formation of myelin nerve coverings It also is vital as a necessary cofactor for making the thyroid hormone thyroxine and stored in the red blood cells, the plasma,  liver, kidney, spleen, pancreas, etc.

1. Dietary cobalt and Cobalt whole blood concentrations in healthy adult male
Recently, there has been an increase in the marketing and sales of dietary supplements, energy drinks, and other consumer products that may contain relatively high concentrations of essential elements. According to the study of assessement of Co whole blood concentrations in four healthy adult male volunteers who ingested a commercially available Co supplement (0.4mg Co/day) for 15 or 16days by ChemRisk, LLC, indicated that the mean whole blood Co concentration in the volunteers after 15 or 16days of dosing was 3.6μg Co/L and ranged from 1.8 to 5.1μg Co/L. The mean observed concentration in the study group was approximately 9-36 times greater than background concentrations. Further studies of Co whole blood concentrations following supplementation over longer time periods with additional monitoring of physiological parameters may provide useful information for evaluating the health of persons who take various doses of Co(1).

2. Cobalamin absorption: Mammalian physiology and acquired and inherited disorders
Vitamin B12 (cobalamin) is a cobalt-containing compound synthesized by bacteria and an essential nutrient in mammals, which take it up from diet. mIn the review to summarize the causes leading to vitamin B12 deficiency including decreased intake, impaired absorption and increased requirements, found that under physiological conditions, vitamin B12 bound to the gastric intrinsic factor is internalized in the ileum by a highly specific receptor complex composed by Cubilin (Cubn) and Amnionless (Amn). Following exit of vitamin B12 from the ileum, general cellular uptake from the circulation requires the transcobalamin receptor CD320 whereas kidney reabsorption of cobalamin depends on Megalin (Lrp2). Whereas malabsorption of vitamin B12 is most commonly seen in the elderly, selective pediatric, nondietary-induced B12 deficiency is generally due to inherited disorders including the Imerslund-Gräsbeck syndrome and the much rarer intrinsic factor deficiency. Biochemical, clinical and genetic research on these disorders considerably improved our knowledge of vitamin B12 absorption. This review describes basic and recent findings on the intestinal handling of vitamin B12 and its importance in health and disease(2).

3. Cobalamin deficiency and spina bifida and other neural tube defects
Cobalamin deficiency in the newborn usually results from cobalamin deficiency in the mother. Megaloblastic anaemia, pancytopenia and failure to thrive can be present, accompanied by neurological deficits if the diagnosis is delayed. According to the study by the the McGill University-Montreal Montreal Children's Hospital Research Institute of the McGill University Health Center, most cases of spina bifida and other neural tube defects result from maternal folate and/or cobalamin insufficiency in the periconceptual period. Polymorphisms in a number of genes involved in folate and cobalamin metabolism exacerbate the risk. Inborn errors of cobalamin metabolism affect its absorption, (intrinsic factor deficiency, Imerslund-Gräsbeck syndrome) and transport (transcobalamin deficiency) as well as its intracellular metabolism affecting adenosylcobalamin synthesis (cblA and cblB), methionine synthase function (cblE and cblG) or both (cblC, cblD and cblF). Inborn errors of folate metabolism include congenital folate malabsorption, severe methylenetetrahydrofolate reductase deficiency and formiminotransferase deficiency(3).

4. Inherited cobalamin malabsorption and Gene involved
Inherited malabsorption of cobalamin (Cbl) causes hematological and neurological abnormalities that can be fatal. According to the study by the Ohio State University, in the revealed population-specific mutations, mutational hotspots, and functionally distinct regions in the three causal genes. We identified mutations in 126/154 unrelated cases (82%). Fifty-three of 126 cases (42%) were mutated in CUBN, 45/126 (36%) were mutated in AMN, and 28/126 (22%) had mutations in GIF. We found 26 undescribed mutations in CUBN, 19 in AMN, and 7 in GIF for a total of 52 novel defects described herein. We excluded six other candidate genes as culprits and concluded that additional genes might be involved(4).

5. Cobalamin) deficiency and complications
Vitamin B12 (or cobalamin) deficiency is well known in geriatric patients, but not in those with spinal cord injury (SCI). According to the study by the Veterans Affairs Puget Sound Health Care System, Cobalamin deficiet SCI patients presented with depression and fatigue, 2 had worsening pain, 2 had worsening upper limb weakness, and 2 had memory decline. Of the 12 patients with subnormal serum vitamin B12 levels, 6 were asymptomatic. Classic laboratory findings of low serum vitamin B12, macrocytic red blood cell indices, and megaloblastic anemia were not always present. Anemia was identified in 7 of the 16 patients and macrocytic red blood cells were found in 3 of the 16 patients. Only 1 of the 16 SCI patients had a clear pathophysiologic mechanism to explain the vitamin B12 deficiency (ie, partial gastrectomy); none of the patients were vegetarian. Twelve of the SCI patients appeared to experience clinical benefits from cyanocobalamin replacement (some patients experienced more than 1 benefit), including reversal of anemia (5 patients), improved gait (4 patients), improved mood (3 patients), improved memory (2 patients), reduced pain (2 patients), strength gain (1 patient), and reduced numbness (1 patient)(5).

6. Psychiatric manifestations of vitamin B12 deficiency
There is a report of a case of a patient with vitamin B12 deficiency, who has presented severe depression with delusion and Capgras' syndrome, delusion with lability of mood and hypomania successively, during a period of two Months. Case report - Mme V., a 64-Year-old woman, was admitted to the hospital because of confusion. She had no history of psychiatric problems. She had history of diabetes, hypertension and femoral prosthesis. The red blood count revealed a normocytosis with anemia (hemoglobin=11,4 g/dl). At admission she was uncooperative, disoriented in time and presented memory and attention impairment and sleep disorders. She seemed sad and older than her real age. Facial expression and spontaneous movements were reduced, her speech and movements were very slow. She had depressed mood, guilt complex, incurability and devaluation impressions. She had a Capgras' syndrome and delusion of persecution. Her neurologic examination, cerebral scanner and EEG were postponed because of uncooperation. Further investigations confirmed anemia (hemoglobin=11,4 g/dl) and revealed vitamin B12 deficiency (52 pmol/l) and normal folate level. Antibodies to parietal cells were positive in the serum and antibodies to intrinsic factor were negative. An iron deficiency was associated (serum iron=7 micromol/l; serum ferritin concentration=24 mg/l; serum transferrin concentration=3,16 g/l). This association explained normocytocis anemia(6).

7. Effect of dietary organic supplementation on milk production, follicular growth, embryo quality, and tissue mineral concentrations in dairy cows
In the study to evaluate the potential effects of organic trace mineral supplementation on reproductive measures in lactating dairy cows, Cows were blocked by breed and randomly assigned at dry-off to receive inorganic trace mineral supplementation (control; n = 32) or to have a portion of supplemental inorganic Zn, Cu, Mn, and Co replaced with an equivalent amount of the organic forms of these minerals (treatment; n = 31), found that replacing a portion of inorganic supplemental trace minerals with an equivalent amount of these organic trace minerals (Zn, Mn, Cu, and Co) increased milk production in mid-lactation, but did not affect postpartum follicular dynamics, embryo quality, or liver and luteal trace mineral concentrations(7).

8. zinc-nickel-cobalt solution (ZnNiCo) and inflammation in adipose tissue
In the study to test the effect of a zinc-nickel-cobalt solution (ZnNiCo) on adipocyte function and to identify potential health effects of this solution in the context of obesity and associated disorders, indicated that the trace elements present in ZnNiCo are able to modulate the expression level of several inflammation related transcripts in adipocytes. These studies suggest that ZnNiCo could play a role in the prevention of inflammation in adipose tissue in obesity(8).

9. Cobalt-containing supplements
Cobalt-containing supplements are readily available in the U.S. and have been marketed to consumers as energy enhancers. However, little information is available regarding cobalt (Co) body burden and steady-state blood concentrations following the intake of Co dietary supplements. According to the study by the ChemRisk, LLC, 4840 Pearl East Circle, Boulder, CO 80301, United States, Pre-supplementation blood Co concentrations were less than the reporting limit of 0.5μg/L, consistent with background concentrations reported to range between 0.1 and 0.4μg/L. The mean whole blood Co concentration in the volunteers after 15 or 16days of dosing was 3.6μg Co/L and ranged from 1.8 to 5.1μg Co/L. The mean observed concentration in the study group was approximately 9-36 times greater than background concentrations. Further studies of Co whole blood concentrations following supplementation over longer time periods with additional monitoring of physiological parameters may provide useful information for evaluating the health of persons who take various doses of Co(9).

10. Vitamin B12 malabsorption: Mammalian physiology and acquired and inherited disorders
Vitamin B12 (cobalamin) is a cobalt-containing compound synthesized by bacteria and an essential nutrient in mammals. According to the study by the Hospitalier National d'Ophtalmologie des Quinze-Vingts, malabsorption of vitamin B12 is most commonly seen in the elderly, selective pediatric, nondietary-induced B12 deficiency is generally due to inherited disorders including the Imerslund-Gräsbeck syndrome and the much rarer intrinsic factor deficiency. Biochemical, clinical and genetic research on these disorders considerably improved our knowledge of vitamin B12 absorption(10).

11. The effects of Co on FA composition in blood
In the study to examine the amount of Co needed to obtain this effect. High-yielding dairy cows (n 4), equipped with ruminal cannulas, used in a 4 × 4 Latin square design, found that there was a linear effect of increasing the level of Co on milk FA composition. The effects of Co on FA composition in blood were insignificant compared with the effects on milk. In milk fat, the concentration of cis-9-18 : 1 was reduced by as much as 38 % on T4 compared with T1. Feed intake and milk yield were negatively affected by increasing the Co level(11).

12. For more information of Cobalamin (Vitamin B12), please visit Vitamin B12 in vitamins and minerals section

Natural Remedies for Dementia Memory Loss Reversal
Guarantee to Stop Progression and Reverse Memory Loss in Alzheimer and  Dementia  with step by step instructions through Scientific Studies  within 2 Months or your Money back

Super foods Library, Eat Yourself Healthy With The Best of the Best Nature Has to Offer

For over 100 healthy recipes, http://diseases-researches.blogspot.ca/p/blog-page_17.html

Sources
(1) http://www.ncbi.nlm.nih.gov/pubmed/23207477
(2) http://www.ncbi.nlm.nih.gov/pubmed/23178706
(3) http://www.ncbi.nlm.nih.gov/pubmed/16846473
(4) http://www.ncbi.nlm.nih.gov/pubmed/22929189
(5) http://www.ncbi.nlm.nih.gov/pubmed/12828286
(6) http://www.ncbi.nlm.nih.gov/pubmed/15029091
(7) http://www.ncbi.nlm.nih.gov/pubmed/20817861
(8) http://www.ncbi.nlm.nih.gov/pubmed/23503329
(9) http://www.ncbi.nlm.nih.gov/pubmed/23207477
(10) http://www.ncbi.nlm.nih.gov/pubmed/23178706
(11) http://www.ncbi.nlm.nih.gov/pubmed/22682538