Alzheimer's disease is a brain disorder correlated with major reductions in the addition of new neurons to the respective target areas through destruction of brain cells, causing cognitive modalities severe enough to affect language communication, memory, lifelong hobbies or social life. Alzheimer's gets worse over time, and it is fatal.
According to statistic, over 25 million people in the world today are affected by dementia and most are suffering from Alzheimer's disease.
Vitamin C, also known as L-ascorbic acid, is a water-soluble vitamin, found in fresh fruits, berries and green vegetables. It is best known for its free radical scavengers activity and regenerating oxidized vitamin E for immune support.
Epidemiological studies linking vitamin C in reduced risk of Alzheimers' disease may be inconclusive.
But some researchers in the survey of Alzheimers' patients found inadequate dietary vitamin C due to low intake of vegetables and fruits(1). The study from Vanderbilt University Medical Center showed a positive effect in maintaining healthy vitamin C levels enhanced protective function against age-related cognitive decline and Alzheimer's disease, but avoiding vitamin C deficiency would be more beneficiary than taking supplements(2). On the basis of the meta-analysis studies published up to October 2011 between in Medline and Scopus databases, dietary intakes of the three antioxidants (vitamin E, vitamin C, and β-carotene) can lower the risk of AD(3). Vitamin complex included ascorbic acid, alpha-tocopherol, and beta-carotene, showed to reduce oxidative stress in PBMNC of AD patients through lowering ROS (Reactive oxygen species) production, improved cellular antioxidant capacities and modified cytokine induced inflammation(4). Aβ42 aggregation induced neurotoxicity, causing synaptic dysfunction and induced tissue oxidation (DNA/RNA, proteins, and lipids) through trace metals may be inhibited by antioxidants such as vitamin C through conversion of toxic superoxide radical to less reactive hydrogen peroxide, contributing to protection from AD(5). Other suggested that since intracellular ascorbate serves several functions in the CNS, including antioxidant protection, peptide amidation, myelin formation, synaptic potentiation, and protection against glutamate toxicity, it may protect neurons from the oxidant damage associated with neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's(6). Unfortunately, in Oral supplementation of vitamin C and vitamin E therapy against Alzheimers' disease conducted by Auburn University detected no difference in the incidence of AD during the 4-year follow-up, and suggested vitamin C should not be recommended due to lack of consistent efficacy data of vitamin C in preventing or treating AD(7)(8) and a cross-sectional study, plasma Aβ40 and Aβ42 and dietary data obtained from 1,219 cognitively healthy elderly with age >65 years, found no association of vitamins complex correlated with plasma Aβ levels(9).
Taking altogether, composition of vitamin complex included vitamin C may be effective in reduced risk of Alzheimers' disease and treatment through protection of neurons from oxidative damage, against glutamate toxicity, etc. Daily ingestion of high-dose vitamin C may be considered safe, but in rare incidence, overdoses in a prolonged period of time, may cause intra-renal oxalate crystal deposition, a fatal nephrotoxicity(10)(11).
Chinese Secrets To Fatty Liver And Obesity Reversal
Use The Revolutionary Findings To Achieve
Optimal Health And Loose Weight
Ovarian Cysts And PCOS Elimination
Back to Most common Types of Cancer http://kylejnorton.blogspot.ca/p/blog-page.html
Back to Kyle J. Norton Home page http://kylejnorton.blogspot.ca
References
(1) Dietary fat and antioxidant vitamin intake in patients of neurodegenerative disease in a rural region of Jalisco, Mexico by Navarro-Meza M, Gabriel-Ortiz G, Pacheco-Moisés FP, Cruz-Ramos JA, López-Espinoza A.(PubMed)
(2) A critical review of vitamin C for the prevention of age-related cognitive decline and Alzheimer's disease by Harrison FE.(PubMed)
(3) Dietary intakes of vitamin E, vitamin C, and β-carotene and risk of Alzheimer's disease: a meta-analysis by Li FJ1, Shen L, Ji HF.(PubMed)
(4) Ascorbic acid, alpha-tocopherol, and beta-carotene reduce oxidative stress and proinflammatory cytokines in mononuclear cells of Alzheimer's disease patients by de Oliveira BF, Veloso CA, Nogueira-Machado JA, de Moraes EN, Santos RR, Cintra MT, Chaves MM.(PubMed)
(5) Formation of the 42-mer Amyloid β Radical and the Therapeutic Role of Superoxide Dismutase in Alzheimer's Disease by Murakami K1, Shimizu T, Irie K.(PubMed)
(6) Vitamin C transport and its role in the central nervous system by May JM.(PubMed)
(7)Vitamin C and vitamin E for Alzheimer's disease by Boothby LA1, Doering PL.(PubMed)
(8) Effect of one-year vitamin C- and E-supplementation on cerebrospinal fluid oxidation parameters and clinical course in Alzheimer's disease by Arlt S1, Müller-Thomsen T, Beisiegel U, Kontush A.(PubMed)
(9) Nutrient intake and plasma β-amyloid by Gu Y1, Schupf N, Cosentino SA, Luchsinger JA, Scarmeas N.(PubMed)
(10) Fatal vitamin C-associated acute renal failure by McHugh GJ, Graber ML, Freebairn RC.(PubMed)
(11) Ascorbic acid overdosing: a risk factor for calcium oxalate nephrolithiasis by Urivetzky M, Kessaris D, Smith AD.(PubMed)
No comments:
Post a Comment