Tuesday, May 23, 2017

Thyroid hormone: Triiodothyronine stimulates glucose transport in bone cells

Kyle J. Norton(Scholar and Master of Nutrients, all right reserved)
Health article writer and researcher; Over 10.000 articles and research papers have been written and published on line, including world wide health, ezine articles, article base, healthblogs, selfgrowth, best before it's news, the karate GB daily, etc.,.
Named TOP 50 MEDICAL ESSAYS FOR ARTISTS & AUTHORS TO READ by Disilgold.com Named 50 of the best health Tweeters Canada - Huffington Post
Nominated for shorty award over last 4 years
Some articles have been used as references in medical research, such as international journal Pharma and Bio science, ISSN 0975-6299.                     

                                 Thyroid hormone



Thyroid hormone (triiodothyronine (T3) and thyroxine (T4)), produced by the thyroid gland, plays an important role in regulation of metabolism, including directly boosts energy metabolism and triggers rapid protein synthesis and regulates mitochondrial gene transcription, etc. Iodine is necessary for the production of T3and T4, deficiency of Iodine can lead to enlarge thyroid grand and goitre.


     Thyroid hormone: Triiodothyronine stimulates glucose transport in bone cells


In the study to evaluate whether 3,3',5-triiodo-l-thyronine (T₃) stimulates the uptake of glucose in osteoblastic cells, PyMS (a cell line derived from rat bone) cells were kept in serum-free culture medium and treated with T₃, found that T₃ did not influence the cell number but slightly (1.3-fold) increased the protein content of the cell cultures. 2DG ([1-¹⁴C]-2-deoxy-D: -glucose)uptake was low in serum-deprived cell cultures and was increased by T₃ (up to 2.5-fold at 1 nmol l⁻¹ after 4 days) in a dose- and time-dependent manner. Triiodothyronine at 1 nmol l⁻¹ increased GLUT1 and GLUT3 abundance in membranes. Therefore, increased glucose uptake induced by T₃ in osteoblasts may be mediated by the known high-affinity glucose transporters GLUT1 and GLUT3(13).





No comments:

Post a Comment