Health article writer and researcher; Over 10.000 articles and research papers have been written and published on line, including world wide health, ezine articles, article base, healthblogs, selfgrowth, best before it's news, the karate GB daily, etc.,.
Named TOP 50 MEDICAL ESSAYS FOR ARTISTS & AUTHORS TO READ by Disilgold.com Named 50 of the best health Tweeters Canada - Huffington Post
Nominated for shorty award over last 4 years
Some articles have been used as references in medical research, such as international journal Pharma and Bio science, ISSN 0975-6299.
II. Grape Seeds and Skins
Grape is a woody vines of the genus Vitis, belong to the family Vitaceae, native to southern Turkey.
B. By Phytochemicals in Foods
B.1. Resveratrol is a phytochemical in the class of Stilbenoids, found abundantly in skins and seed of grape wine, nuts, peanuts, etc.
1. Anti cancers
In the review of resveratrol and it effects as a chemopreventive agent, tumor initation, promotion, and progression via multiple pathways, indicated thatresveratrol exerts antioxidant activities, hence contributing to the prevention of tumor initiation. Growing or metastasizing carcinomas are inhibited by resveratrolthrough prevention of angiogenesis by inhibiting VEGF and matrix metalloproteases. Induction of apoptosis and cell cycle arrest, important mechanisms for cancer therapy, are stimulated by resveratrol through different mechanisms, e.g., activation of p53 and modulation of cell cycle proteins, according to "Fighting cancer with red wine? Molecular mechanisms ofresveratrol" by Kraft TE, Parisotto D, Schempp C, Efferth T.(1)
2. Anti cancers and anti inflammatory effects
In the observation of Resveratrol's effects in exhibition of several physiological activities including anticancer and anti-inflammatory activities in vitro and in experimental animal models, as well as in humans, found that Anticancer activity of this compound is mainly due to induction of apoptosis via several pathways, as well as alteration of gene expressions, all leading to a decrease in tumor initiation, promotion, and progression. Resveratrol exhibits anti-inflammatory activity through modulation of enzymes and pathways that produce mediators of inflammation and also induction of programmed cell death in activated immune cells. Resveratrolhas been shown to produce no adverse effects, even when consumed at high concentrations, according to "Potential of resveratrol in anticancer and anti-inflammatory therapy" by Udenigwe CC, Ramprasath VR, Aluko RE, Jones PJ.(2)
3. Prostate cancer
In the evaluation of the tumor suppressor gene PTEN (phosphatase and tensin homolog deleted on chromosome 10) and the androgen receptor (AR) in tumor development and progression in prostate carcinogenesis, found that resveratrolmay act as potential adjunctive treatment for late-stage hormone refractory prostate cancer. More importantly, for the first time, our study demonstrates the mechanism by which AR regulates PTEN expression at the transcription level, indicating the direct link between a nuclear receptor and the PI3K/AKT pathway, according to "Resveratrol regulates the PTEN/AKT pathway through androgen receptor-dependent and -independent mechanisms in prostate cancer cell lines' by
Wang Y, Romigh T, He X, Orloff MS, Silverman RH, Heston WD, Eng C.(3)
4. Cardiovascular diseases
In the revie of reviews some of the key studies, and the known mechanisms for these beneficial effects. Evidence from different experimental studies, including from the authors' laboratories, and the beneficial effects of polyphenols found in red wine, especially resveratrol in grape skins.
found that Resveratrol benefits include a reduction in cardiovascular morbidity and mortality, lung cancer and prostate cancer by approximately 30% to 50%, 57% and 50%, respectively. Polyphenols possess antioxidant, superoxide-scavenging, ischemic-preconditioning and angiogenic properties. Some of these properties of polyphenols may explain their protective effects on the cardiovascular system, as well as other body organs, according to "Significance of wine and resveratrol incardiovascular disease: French paradox revisited" byVidavalur R, Otani H, Singal PK, Maulik N.(4)
5. Cardiovascular health
In the review of Resveratrol (3,4',5-trihydroxystilbene), a member of natural, plant-derived chemicals known as polyphenols and is attracting increased attention due to its diverse health benefits especially in case of cardiovascular disease, cancer, diabetes and neurological problems, indicated that Recently, resveratrol was found to induce autophagy and regenerate myocardial ischemic tissue treated with stem cells. Overall observation indicates that resveratrol has a high therapeutic potentials for the treatment of cardiovascular diseases, according to "Resveratroland cardiovascular health" by Das M, Das DK.(5)
6. Anti inflammatory effects
In the study of implantation and growth of metastatic cancer cells at distant organs is promoted by inflammation-dependent mechanism, found that resveratrolremarkably inhibited hepatic retention and metastatic growth of melanoma cells by 50% and 75%, respectively. The mechanism involved IL-18 blockade at three levels: First, resveratrol prevented IL-18 augmentation in the blood of melanoma cell-infiltrated livers. Second, resveratrol inhibited IL-18-dependent expression of VCAM-1 by tumor-activated hepatic sinusoidal endothelium, preventing melanoma cell adhesion to the microvasculature. Third, resveratrol inhibited adhesion- and proliferation-stimulating effects of IL-18 on metastatic melanoma cells through hydrogen peroxide-dependent nuclear factor-kappaB translocation blockade on these cells, according to "Resveratrol prevents inflammation-dependent hepatic melanoma metastasis by inhibiting the secretion and effects of interleukin-18" by Salado C, Olaso E, Gallot N, Valcarcel M, Egilegor E, Mendoza L, Vidal-Vanaclocha F.(6)
7. Oxidative stress and endothelial dysfunction
In the investiagtion of the role of S6K1 in aging-associated endothelial dysfunction and effects of the polyphenol resveratrol on S6K1 in aging endothelial cells, wrote that our data demonstrate a causal role of the hyperactive S6K1 in eNOS uncoupling leading to endothelial dysfunction and vascular aging. Resveratrolimproves endothelial function in aging, at least in part, through inhibition of S6K1. Targeting S6K1 may thus represent a novel therapeutic approach for aging-associated vascular disease, according to "Hyperactive S6K1 mediates oxidative stress and endothelial dysfunction in aging: inhibition byresveratrol" by Rajapakse AG, Yepuri G, Carvas JM, Stein S, Matter CM, Scerri I, Ruffieux J, Montani JP, Ming XF, Yang Z.(7)
8. Insulin resistance
In the evaluation of the effects of Res on insulin sensitivity and the underlying mechanism, insulin-resistant KKA(y) mice were treated with 2 and 4 g/kg diets of Res for 12 weeks, found that Res intervention reduces blood glucose and serum insulin levels, improves insulin and glucose tolerance, increases serum adiponectin and adiponectin mRNA levels in epididymal adipose tissues, and more importantly, elevates Sirt1, p-AMPK, p-IRS1, and p-AKT levels in liver and soleus muscles, according to "Effects of resveratrol on the amelioration of insulin resistance in KKA(y) mice" by Chen S, Li J, Zhang Z, Li W, Sun Y, Zhang Q, Feng X, Zhu W.(8)
9. Propionibacterium acnes
In the investigation of whether P. acnes biofilms could be eradicated by plant extracts or their active compounds, and whether other mechanisms besides killing of biofilm cells could be involved, found that out of 119 plant in the study, researchers identified five with potent antibiofilm activity against P. acnes (extracts from Epimedium brevicornum, Malus pumila, Polygonum cuspidatum, Rhodiola crenulata and Dolichos lablab). We subsequently identified icariin,resveratrol and salidroside as active compounds in three of these extracts. Extracts from E. brevicornum and P. cuspidatum, as well as their active compounds (icariin and resveratrol, respectively) showed marked antibiofilm activity when used in subinhibitory concentrations, indicating that killing of microbial cells is not their only mode of action, accoridng to "Eradication of Propionibacterium acnes biofilms by plant extracts and putative identification of icariin, resveratrol and salidroside as active compounds" by Coenye T, Brackman G, Rigole P, De Witte E, Honraet K, Rossel B, Nelis HJ.(9)
10. Healthy heart and longevity
In the review focuses on the anti-aging aspects of resveratrol, the possible mechanisms of action,
found that resveratrol can induce the expression of several longevity genes including Sirt1, Sirt3, Sirt4, FoxO1, Foxo3a and PBEF and prevent aging-related decline in cardiovascular function including cholesterol level and inflammatory response, but it is unable to affect actual survival or life span of mice, according to "Resveratrol and red wine, healthy heart and longevity" by Das DK, Mukherjee S, Ray D.(10)
11. Antioxidants
In the assessment of the effects of the antioxidants resveratrol and quercetin on frozen-thawed ram sperm, found that Semen samples (which exceeded minimum standards) from four mature crossbreed Santa Inês rams were pooled and aliquots of each pool were diluted in Tris-egg yolk-glycerol, with the addition of 0, 5, 10, 15, and 20 μg/mL of resveratrol and quercetin in Experiment 1 and Experiment 2, respectively. In Experiment 1, the proportion of sperm with a high mitochondrial membrane potential was greater (P < 0.02) in the control group than in resveratrol20 μg/mL group. In Experiment 2, the proportion of sperm with high mitochondrial membrane potential was greater in the control group (P < 0.0001) than in the other experimental groups, and greater in the quercetin 5 μg/mL group (P < 0.05) than in the other quercetin-treated groups, according to "Effect of antioxidantsresveratrol and quercetin on in vitro evaluation of frozen ram sperm" by Silva EC, Cajueiro JF, Silva SV, Soares PC, Guerra MM.(11)
12. Incision-induced acute and chronic pain
In the searching for more efficacious treatments in inhibition of incision-induced pain and prevention of the transition to chronic pain following surgery, found that local injection of resveratrol around the surgical wound strongly attenuates incision-induced allodynia. Intraplantar IL-6 injection and plantar incision induces persistent nociceptive sensitization to PGE2 injection into the affected paw after the resolution of allodynia to the initial stimulus. We further show that resveratroltreatment at the time of IL-6 injection or plantar incision completely blocks the development of persistent nociceptive sensitization consistent with the blockade of a transition to a chronic pain state by resveratrol treatment, according to "Resveratrol engages AMPK to attenuate ERK and mTOR signaling in sensory neurons and inhibits incision-induced acute and chronic pain" by Tillu DV, Melemedjian OK, Asiedu MN, Qu N, De Felice M, Dussor G, Price TJ.(12)
13. Anti diabetes
In the evaluation of resveratrol, a polyphenolic SIRT1 activator and its SIRT1 activation in an in vitro fluorescent based assay (EC(50) : 7 μM) and the efficacy of resveratrol was also evaluated in ob/ob mice for its antidiabetic and associated metabolic effects, found that a significant improvement observed in the glucose excursion in the oral glucose tolerance test performed for 120 min; although an insignificant improvement in the triglycerides, total cholesterol, adiponectin and free fatty acid levels was observed at different doses of resveratrol tested. The present findings suggest that resveratrol is an antihyperglycemic agent and drugs similar to resveratrol can be considered as an effective therapeutic adjuvant for the current treatment of diabetes mellitus, according to "Antidiabetic activity ofresveratrol, a known SIRT1 activator in a genetic model for type-2 diabetes" by Sharma S, Misra CS, Arumugam S, Roy S, Shah V, Davis JA, Shirumalla RK, Ray A.(13)
14. Neuroprotective effects
In the elucidation of the neuroprotective effect and influence of resveratrol on the extracellular levels of neurotransmitter and neuromodulator during ischemia/reperfusion in rats,
found that chronic treatment with resveratrol remarkably reduced the release of excitatory neurotransmitter glutamate, aspartate and neuromodulator d-Serine during ischemia and reperfusion; and significantly increased the basal extracellular levels of inhibitory neurotransmitter gamma-amino-n-butyric acid, glycine and taurine. Chronic treatment with resveratrol also ameliorated O-phosphoethanolamine levels and excitotoxic index during ischemia and reperfusio, according to "Neuroprotective effects of resveratrol on ischemic injury mediated by modulating the release of neurotransmitter and neuromodulator in rats" by Li C, Yan Z, Yang J, Chen H, Li H, Jiang Y, Zhang Z(14)
15. Neuroprotective effects
In the investigation of the neuroprotective properties of resveratrol found thatResveratrol has neuroprotective features both in vitro and in vivo in models of Alzheimer's disease (AD), but it has proved to be beneficial also in ischemic stroke, Parkinson's disease, Huntington's disease, and epilepsy, according to "Neuroprotective properties of resveratrol in different neurodegenerative disorders" by Albani D, Polito L, Signorini A, Forloni G.(15)
16. Etc.
B.2. Pterostilbene
Pterostilbene is a phytochemical in the class of Stilbenoids, found abundantly in grapes, blueberries, etc.
1. Colon cancer
In the identification of the chemopreventive potential of pterostilbene with colonic tumor formation as an end point and further to evaluate the mechanistic action ofpterostilbene during colon carcinogenesis, found that Colon tumors frompterostilbene-fed animals showed reduced expression of inflammatory markers as well as nuclear staining for phospho-p65, a key molecule in the nuclear factor-kappaB pathway. In HT-29 cells, pterostilbene reduced the protein levels of beta-catenin, cyclin D1 and c-MYC, altered the cellular localization of beta-catenin and inhibited the phosphorylation of p65, according to "Dietary intake ofpterostilbene, a constituent of blueberries, inhibits the beta-catenin/p65 downstream signaling pathway and colon carcinogenesis in rats' by Paul S, DeCastro AJ, Lee HJ, Smolarek AK, So JY, Simi B, Wang CX, Zhou R, Rimando AM, Suh N.(1)
2. Antioxidant effect
In the study of the antioxidant activities of trans-resveratrol, pterostilbene and quercetin, and the effect of their combination were investigated in human erythrocytes in vitro, found that Resveratrol was significantly less effective. However, the three compounds protected the erythocytes against hemolysis and GSH (reduced glutathione) depletion to the same extent. Combinations consisting of two compounds (molar ratio 1:1) influenced lipid peroxidation in a concentration-dependent manner. At lower concentrations, resveratrol with quercetin orpterostilbene inhibited synergistically the oxidative injury of membrane lipids At higher concentrations, an additive effect was observed, according to "Antioxidant effect of trans-resveratrol, pterostilbene, quercetin and their combinations in human erythrocytes in vitro" by Mikstacka R, Rimando AM, Ignatowicz E.(2)
3. Breast cancer
In the study of receptor pathways- estrogen receptor (ER) and tyrosine kinase receptors, especially the epidermal growth factor receptor (EGFR) family and theirs effects on cell-proliferation and in the development of both primary and recurrent breast cancer,
indicated that there is strong evidence to show that several phytochemicals present in berries such as cyanidin, delphinidin, quercetin, kaempferol, ellagic acid, resveratrol and pterostilbene, interact with and alter the effects of these pathways, according to " Influence of Berry-Polyphenols on Receptor Signaling and Cell-Death Pathways: Implications for Breast Cancer Prevention" by Aiyer H, Warri AM, Woode DR, Hilakivi-Clarke L, Clarke R.(3)
4. Anti-adipogenic effects
In the assessment of the effects of garcinol and pterostilbene on cell proliferation and adipogenesis in 3T3-L1 cells, found that garcinol and pterostilbene caused an inhibition of lipid accumulation in the 3T3-L1 adipocyte differentiation phase. Garcinol and pterostilbene also significantly up-regulated the gene expression of adiponectin as well as down-regulated the gene expressions of leptin, resistin, and fatty acid synthase (FAS) in 3T3-L1 adipocyte differentiation. In 3T3-L1 adipocytes, garcinol significantly down-regulated the protein expressions of PPARγ and FAS as well as up-regulated the protein expressions of adipose triglyceride lipase (ATGL) and adiponectin, according to "Inhibitory effects of garcinol and pterostilbene on cell proliferation and adipogenesis in 3T3-L1 cells" by Hsu CL, Lin YJ, Ho CT, Yen GC.(4)
5. Aging and Alzheimer's disease
In the investigation of resveratrol and pterostilbene, a resveratrol derivative, in the protection against age-related diseases including Alzheimer's disease (AD), found that two months of pterostilbene diet but not resveratrol significantly improved radial arm water maze function in SAMP8 compared with control-fed animals. Neither resveratrol nor pterostilbene increased sirtuin 1 (SIRT1) expression or downstream markers of sirtuin 1 activation. Importantly, markers of cellular stress, inflammation, and AD pathology were positively modulated by pterostilbene but not resveratrol and were associated with upregulation of peroxisome proliferator-activated receptor (PPAR) alpha expression, according to "Low-dose pterostilbene, but not resveratrol, is a potent neuromodulator in aging and Alzheimer's disease" by Chang J, Rimando A, Pallas M, Camins A, Porquet D, Reeves J, Shukitt-Hale B, Smith MA, Joseph JA, Casadesus G.(5)
6. Cholesterol
In the investigation of whether resveratrol and its three analogues (pterostilbene, piceatannol, and resveratrol trimethyl ether) would activate the peroxisome proliferator-activated receptor alpha (PPARalpha) isoform, found that the maximal luciferase activity responses to pterostilbene were higher than those obtained with the hypolipidemic drug, ciprofibrate (33910 and 19460 relative luciferase units, respectively), at 100 microM. Hypercholesterolemic hamsters fed withpterostilbene at 25 ppm of the diet showed 29% lower plasma low density lipoprotein (LDL) cholesterol, 7% higher plasma high density lipoprotein (HDL) cholesterol, and 14% lower plasma glucose as compared to the control group. The LDL/HDL ratio was also statistically significantly lower for pterostilbene, as compared to results for the control animals, at this diet concentration, according to "Pterostilbene, a new agonist for the peroxisome proliferator-activated receptor alpha-isoform, lowers plasma lipoproteins and cholesterol in hypercholesterolemic hamsters" by Rimando AM, Nagmani R, Feller DR, Yokoyama W.(6)
7. Atherosclerosis
In the determination of the effect of Pterostilbene (PT) on Vascular endothelial cell (VEC) apoptosis, the main event occurring during the development of atherosclerosis, found that Cotreatment with PT and siRNA of LOX-1 synergistically reduced oxLDL-induced apoptosis in HUVECs. Overexpression of LOX-1 attenuated the protection by PT and suppressed the effects of PT on oxLDL-induced oxidative stress. PT may protect HUVECs against oxLDL-induced apoptosis by downregulating LOX-1-mediated activation through a pathway involving oxidative stress, p53, mitochondria, cytochrome c and caspase protease. PT might be a potential natural anti-apoptotic agent for the treatment of atherosclerosis, according to "Pterostilbene protects vascular endothelial cells against oxidized low-density lipoprotein-induced apoptosis in vitro and in vivo" by Zhang L, Zhou G, Song W, Tan X, Guo Y, Zhou B, Jing H, Zhao S, Chen L.(7)
8. Adjuvant arthritis
In the evaluation of the effects of pinosylvin (PIN) and pterostilbene (PTE), natural substances from the stilbenoid group, on the development of adjuvant arthritis in rats, found that the effect of PTE on CL was only partial. PIN, on the other hand, had a beneficial anti-inflammatory and antioxidant effect on oxidative stress induced biochemical changes occurring in AA, as determined by all three functional parameters, according to "In vivo effect of pinosylvin andpterostilbene in the animal model of adjuvant arthritis" by Macickova T, Drabikova K, Nosal R, Bauerova K, Mihalova D, Harmatha J, Pecivova J.(8)
9. Bladder cancer
In the study of Pterostilbene (PT), a naturally occurring phytoalexin, and its effects in a variety of pharmacologic activities, including antioxidant, cancer prevention activity and cytotoxicity to many cancers, found that PT causes autophagy in cancer cells and suggests that PT could serve as a new and promising agent for the treatment of sensitive and chemoresistant bladder cancer cells, according to "Pterostilbene induces autophagy and apoptosis in sensitive and chemoresistant human bladder cancer cells" by Chen RJ, Ho CT, Wang YJ.(9)
10. Anti-inflammatory effects
In the examination of the molecular mechanisms of the action of pterostilbene in colon cancer,
indicated that A combination of cytokines (tumor necrosis factor-alpha, IFN-gamma, and bacterial endotoxin lipopolysaccharide) induced inflammation-related genes such as inducible nitric oxide synthase and cyclooxygenase-2, which was significantly suppressed by treatment with pterostilbene. We further identified upstream signaling pathways contributing to the anti-inflammatory activity ofpterostilbene by investigating multiple signaling pathways, including nuclear factor-kappaB, Janus-activated kinase-signal transducer and activator of transcription, extracellular signal-regulated kinase, p38, c-Jun NH(2)-terminal kinase, and phosphatidylinositol 3-kinase, according to "Anti-inflammatory action ofpterostilbene is mediated through the p38 mitogen-activated protein kinase pathway in colon cancer cells" by Paul S, Rimando AM, Lee HJ, Ji Y, Reddy BS, Suh N.(10)
11. Etc.
B.3. Piceatannol
Piceatannol is a phytochemical in the class of Stilbenoids, found abundantly in grapes, etc.
1. Anti cancers
In the determination of the apoptotic effects of piceatannol and myricetin, naturally occurring polyphenols in red wine, alone or in combination, in two human cell lines: HL-60 (leukemia) and HepG2 (hepatoma), found that on the signaling pathways responsible for induction of HO-1 expression.found that piceatannol or myricetin alone induced apoptotic cell death in a concentration- and time-dependent manners in HL-60 cells. Furthermore, in combined treatment the percentage of apoptotic HL-60 cells was significantly higher. Nevertheless, the percentage of TUNEL positive HepG2 cells only was significant after piceatannol treatment and in combined treatment was even lower than in cells treated with piceatannol alone, according to "Selective apoptotic effects of piceatannol and myricetin in human cancer cells" by Morales P, Haza AI.(1)
2. Breast cancer
found that PIC inhibited migration and anchorage-independent growth of human mammary epithelial cells (MCF-10A) treated with the prototypic tumor promoter, 12-O-tetradecanoylphorbol-13-aceate (TPA). PIC treatment suppressed the TPA-induced activation of NF-kappaB and expression of cyclooxygenase-2 (COX-2) in MCF-10A cells. We speculate that an electrophilic quinone formed as a consequence of oxidation of PIC bearing the catechol moiety may directly interact with critical cysteine thiols of IKKbeta, thereby inhibiting its catalytic activity "Piceatannol, a catechol-type polyphenol, inhibits phorbol ester-induced NF-{kappa}B activation and cyclooxygenase-2 expression in human breast epithelial cells: cysteine 179 of IKK{beta} as a potential target" by Son PS, Park SA, Na HK, Jue DM, Kim S, Surh YJ.(2)
3. Anti-inflammatory activities and cardioprotective effect
In the investigation of the modulation of inflammation by resveratrol and its metabolites by determining the expression and release of chemokine, eotaxin-1, in cultured human pulmonary artery endothelial cells, found that piceatannol showed potency similar to resveratrol. We propose that control of eotaxin-1 expression and release by proinflammatory cytokines in HPAEC may be considered as an in vitro model for screening and discovering polyphenols with anti-inflammatory activities and cardioprotective potentials, according to "Control of eotaxin-1 expression and release by resveratrol and its metabolites in culture human pulmonary artery endothelial cells" by Yang CJ, Lin CY, Hsieh TC, Olson SC, Wu JM.(3)
4. Alzheimer's disease
In the demonstration of the presence of autoantibodies to ecto-F1-ATPase (ASabs) in sera and cerebrospinal fluids from patients with Alzheimer's disease (AD), found that ASabs, unlike irrelevant antibodies, can increase cellular uptake of HDL, a risk factor for the development of AD, via a mechanism involving the prototypical function of ecto-F1-ATPase: the generation of ADP due to the hydrolysis of ATP. Piceatannol, a specific inhibitor ecto-F1-ATPase, completely hindered these effects. We hypothesize that ASabs could exert a pathogenetic role in AD, according to "Anti-ATP synthase autoantibodies from patients with Alzheimer's disease reduce extracellular HDL level" by Vacirca D, Barbati C, Scazzocchio B, Masella R, Rosano G, Malorni W, Ortona E.(4)
5. Prostate cancer
In the determination of whether piceatannol inhibits the lung metastasis of prostate cancer cells, MAT-Ly-Lu (MLL) rat prostate cancer cells expressing luciferase were injected into the tail veins of male nude mice, found that Piceatannol increased the protein levels of tissue inhibitor of metalloproteinase-2 in a concentration-dependent fashion. Additionally, piceatannol inhibited the phosphorylation of signal transducer and activator of transcription (STAT) 3. Furthermore, piceatannoleffected reductions in both basal and EGF-induced interleukin (IL)-6 secretion. An IL-6 neutralizing antibody inhibited EGF-induced STAT3 phosphorylation and EGF-stimulated migration of DU145 cells. Interleukin-6 treatment was also shown to enhance the secretion of uPA and VEGF, STAT3 phosphorylation and the migration of DU145 cells; these increases were suppressed by piceatannol. These results demonstrate that the inhibition of IL-6/STAT3 signaling may constitute a mechanism by which piceatannol regulates the expression of proteins involved in regulating the migration and invasion of DU145 cells, according to "Piceatannolinhibits migration and invasion of prostate cancer cells: possible mediation by decreased interleukin-6 signaling" by Kwon GT, Jung JI, Song HR, Woo EY, Jun JG, Kim JK, Her S, Park JH.(5)
6. Antiallergic and radical scavenging activities
In the assessment of the methanolic extract of the whole plant of Cyperus longus originating in Egypt and its antiallergic effect on ear passive cutaneous anaphylaxis reactions in mice,
found that Among the isolates, longusol B (IC(50)=96 µM), luteolin (3.0 µM), resveratrol (17 µM), piceatannol (24 µM), and cassigarols E (84 µM) and G (84 µM) were found to inhibit the release of β-hexosaminidase, as a marker of antigen-induced degranulations, in rat basophilic leukemia (RBL-2H3) cells, accoridng to "Structures of novel norstilbene dimer, longusone A, and three new stilbene dimers, longusols A, B, and C, with antiallergic and radical scavenging activities from Egyptian natural medicine Cyperus longus" by Morikawa T, Xu F, Matsuda H, Yoshikawa M.(6)
7. Anti aging
In the review of the cellular senescence, characterized by cellular hypertrophy: cell growth in the absence of cell division, indicated that the genes that regulate this process can be activated or inactivated by numerous plant polyphenols such as resveratrol, quercetin, butein, fistein, piceatannol, curcumin. Many of these substances have been shown to lengthen the lifespan of invertebrates. Many of these compounds have other potential beneficial effects on lifespan as antiatherogenic or antineoplastic agents, according to "The potential influence of plant polyphenols on the aging process" by Cherniack EP.(7)
8. Melanogenesis and collagen synthesis
In the evaluation of The effect of passion fruit, the fruit of Passiflora edulis , on melanin inhibition and collagen synthesis, using cultured human melanoma and fibroblast cells, found that treatment of melanoma cells with PF-S led to inhibition of melanogenesis. In addition, the production of total soluble collagen was elevated in dermal fibroblast cells cultured in the presence of PF-S. PF-R and PF-P did not yield these effects. Furthermore, the removal of polyphenols from PF-S led to the abolishment of the effects described above. We discovered thatpiceatannol (3,4,3',5'-tetrahydroxy-trans-stilbene) is present in passion fruit seeds in large amounts and that this compound is the major component responsible for the PF-S effects observed on melanogenesis and collagen synthesis, according to "Extract of Passion Fruit ( Passiflora edulis ) Seed Containing High Amounts of Piceatannol Inhibits Melanogenesis and Promotes Collagen Synthesis" by Matsui Y, Sugiyama K, Kamei M, Takahashi T, Suzuki T, Katagata Y, Ito T.(8)
9. Colitis
In the investigation of the possible protective effects of resveratrol and piceatannolagainst dextran sulfate sodium (DSS)-induced inflammation in mouse colonic mucosa, found that oral administration of resveratrol or piceatannol (10 mg/kg body weight each) for 7 constitutive days attenuated the DSS-induced inflammatory injury, upregulation of iNOS expression, and activation of NF-kappaB, STAT3, and ERK, according to "Resveratrol and piceatannol inhibit iNOS expression and NF-kappaB activation in dextran sulfate sodium-induced mouse colitis" by Youn J, Lee JS, Na HK, Kundu JK, Surh YJ.(9)
10. Etc.
Side Effects
1. Overdose may cause headache, itchy scalp, dizziness, and nausea, abdominal pain etc.
2. Do not take the herbs if you have high blood pressure
3. Grape seed extract may interact with other medication, such blood thinner, NSAID painkiller, etc.
4. Do not take the herb in children or if you are pregnant without approval of the related field specialist.
5. etc.
The Best Way to prevent, treat your disease, including Obesity
and restore your health naturally with Chinese diet
Ovarian Cysts And PCOS Elimination
Holistic System In Existence That Will Show You How To
Permanently Eliminate All Types of Ovarian Cysts Within 2 Months
Super foods Library, Eat Yourself Healthy With The Best of the Best Nature Has to Offer
B.1. Resveratrol (1) http://www.ncbi.nlm.nih.gov/pubmed/20443159(2) http://www.ncbi.nlm.nih.gov/pubmed/18667005
(3) http://www.ncbi.nlm.nih.gov/pubmed/20729295
(4) http://www.ncbi.nlm.nih.gov/pubmed/18651034
(5) http://www.ncbi.nlm.nih.gov/pubmed/20837050
(6) http://www.ncbi.nlm.nih.gov/pubmed/21569399
(7) http://www.ncbi.nlm.nih.gov/pubmed/21544240
(8) http://www.ncbi.nlm.nih.gov/pubmed/22309033
(9) http://www.ncbi.nlm.nih.gov/pubmed/22305279
(10) http://www.ncbi.nlm.nih.gov/pubmed/20238161
(11) http://www.ncbi.nlm.nih.gov/pubmed/22289215
(12) http://www.ncbi.nlm.nih.gov/pubmed/22269797
(13) http://www.ncbi.nlm.nih.gov/pubmed/20623590
(14) http://www.ncbi.nlm.nih.gov/pubmed/20026214
(15) http://www.ncbi.nlm.nih.gov/pubmed/20848560
B.2. Pterostilbene
Sources(1) http://www.ncbi.nlm.nih.gov/pubmed/20061362
(2) http://www.ncbi.nlm.nih.gov/pubmed/20108046
(3) http://www.ncbi.nlm.nih.gov/pubmed/22300613
(4) http://www.ncbi.nlm.nih.gov/pubmed/22094440
(5) http://www.ncbi.nlm.nih.gov/pubmed/21982274
(6) http://www.ncbi.nlm.nih.gov/pubmed/15853379
(7) http://www.ncbi.nlm.nih.gov/pubmed/21928089
(8) http://www.ncbi.nlm.nih.gov/pubmed/21187826
(9) http://www.ncbi.nlm.nih.gov/pubmed/20603834
(10) http://www.ncbi.nlm.nih.gov/pubmed/19549798
B.3. Piceatannol
Sources(1) http://www.ncbi.nlm.nih.gov/pubmed/21935971
(2) http://www.ncbi.nlm.nih.gov/pubmed/20584749
(3) http://www.ncbi.nlm.nih.gov/pubmed/22254182
(4) http://www.ncbi.nlm.nih.gov/pubmed/21677380
(5) http://www.ncbi.nlm.nih.gov/pubmed/21497499
(6) http://www.ncbi.nlm.nih.gov/pubmed/20930408
(7) http://www.ncbi.nlm.nih.gov/pubmed/20829595
(8) http://www.ncbi.nlm.nih.gov/pubmed/20822151
No comments:
Post a Comment